首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
螺纹钢是一种广泛应用的建筑材料,在轧制过程中如果不能及时发现其尺寸和表面缺陷,就会生产出大量废品,给企业带来损失.本文设计了一种基于视觉的螺纹钢表面缺陷检测方法.先利用仿射变换对图像中歪斜的螺纹钢进行校正,然后基于霍夫变换检测纵肋边缘直线位置的方法对螺纹钢正面、侧面图像进行区分.最后针对正面、侧面图像分别进行缺陷检测,快速准确地判别表面是否存在缺陷.实验表明所设计的方法具有较好的稳定性和实用性,能有效地解决人工检测过程中效率低、误检率高等问题.  相似文献   

2.
基于深度学习的表面缺陷检测方法综述   总被引:6,自引:0,他引:6  
陶显  侯伟  徐德 《自动化学报》2021,47(5):1017-1034
近年来, 基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中. 本文对近年来基于深度学习的表面缺陷检测方法进行了梳理, 根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类, 并对各种典型方法进一步细分归类和对比分析, 总结了每种方法的优缺点和应用场景. 本文探讨了表面缺陷检测中三个关键问题, 介绍了工业表面缺陷常用数据集. 最后, 对表面缺陷检测的未来发展趋势进行了展望.  相似文献   

3.
在产品表面缺陷智能检测过程中,存在缺陷样本收集困难、样本不平衡、目标尺寸小和难以定位等问题。针对磁芯表面缺陷检测中存在的问题进行了研究,提出了一种基于深度学习的图像增强和检测方法,首先利用结合高斯混合模型的深度卷积生成对抗网络生成磁芯缺陷图像,然后结合泊松融合方法产生增强的数据集,最后基于YOLO-v3网络,实现了磁芯表面缺陷的智能检测。实验表明,该方法能够生成质量更高、缺陷更明显的图像,检测准确度提升了5.6%。  相似文献   

4.
采用当前方法检测火电机组轴承表面细小缺陷未对高效分离背景图像和缺陷特征,导致检测细小缺陷时,检测所用的时间较长,得到的检测结果与实际不符,存在检测效率低和误检率高的问题。提出火电机组轴承表面细小缺陷深度检测方法。通过形态学滤波算法去除火电机组轴承表面图像中存在的噪声,利用曲线拟合方法实现火电机组轴承表面图像的背景估计,通过最大熵分割法火电机组轴承图像进行二值化处理,使背景图像和缺陷特征高效分离;在此基础上,火电机组轴承表面缺陷目标,通过深度置信网络在逐层学习模型的基础上实现火电机组轴承表面细小缺陷的检测。仿真结果表明,所提方法的检测效率高、误检率低。  相似文献   

5.
在带钢的生产过程中可能会因为生产工艺的问题导致带钢表面出现缺陷,传统的带钢表面检测方法存在检测速度慢、检测精度低等问题。在计算机深度学习快速发展的今天,为实现带钢表面缺陷快速有效的检测,提出改进的掩码区域卷积神经网络(Mask R-CNN)算法,使用[k]-means II聚类算法改进区域建议网络(RPN)锚框生成方法;同时调整Mask R-CNN模型的网络结构,去掉掩码分支,提高了模型的缺陷检测速度。实验在NEU-DET数据集的5种缺陷检测中将原算法的均值平均精度(mAP)从0.810?2提升到0.960?2,检测速度达到5.9?frame/s。并且能够实现对缺陷目标的检测和实例分割,以便研究人员观测缺陷的大小和形状,从而改进工艺。相比于目前其他深度学习的缺陷检测算法,更能满足带钢的生产检测要求。  相似文献   

6.
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。  相似文献   

7.
摘要:磁片表面缺陷的检测一直是磁片厂流水线生产中提高生产效率、降低生产成本的重要环节。当前多种机器视觉检测方法已经被应用,这些方法都是采取人工提取缺陷特征,但由于磁片表面对比度低,磨痕纹理干扰和缺陷块小且亮度变化大等难点,导致准确度不高、通用性不强;另外在实际生产中巨大数据量获取容易,而人工标注成本高;为此提出一种基于深度主动学习的磁片表面缺陷检测方法可以解决以上两个问题;该方法首先,结合边缘检测和模板匹配算法将磁片前景和背景进行分割;其次,使用Inception-Resnet-v2深度神经网络对样本进行训练,完成对缺陷图像的识别;最后,在深度学习过程中,提出一种主动学习的方法来克服数据集庞大但标注成本高的难点。实验结果表明,该方法的缺陷检测识别率达到了96.7%,并且最多能节省25%的人力标注成本。  相似文献   

8.
将小样本学习中的度量学习方法引入缺陷检测领域,提出小样本度量迁移学习方法,用于解决深度学习方法中需要大量学习样本的问题.方法主要分为两个阶段:第一阶段使用公开或便于获得的大型数据集预训练深度网络;第二阶段将网络学习到的相关知识通过度量学习模块迁移到表面缺陷检测领域.实验表明,小样本学习在缺陷检测领域的可行性.  相似文献   

9.
针对人工和传统自动化算法检测发动机零件表面缺陷中准确率和效率低下,无法满足智能制造需求问题,提出了一种基于深度学习的检测算法.以Faster R-CNN深度学习算法为算法框架,引入聚类理论来确定anchor方案,通过对比k-meansII和CURE聚类算法生成anchor对检测结果的影响,提出了基于聚类生成anchor方案的Faster R-CNN的零件表面缺陷检测算法,并引入多级ROI池化层结构,减少ROI池化过程中取整带来的偏差,实现高效并准确检测零件表面缺陷的目的.通过设计缺陷图像数据采集方案,建立了3种缺陷零件数据集,并验证了算法的性能.实验结果表明,该算法将缺陷检测的均值平均精度mAP从原算法的54.7%提高到97.9%,检测速度最快达到4.9 fps,能够满足智能制造的生产需求.  相似文献   

10.
佟鑫  郑彤  于重重  叶洋 《计算机仿真》2023,(4):160-164+212
现有汽车零部件表面缺陷检测方法大多数都是依靠人工目检或传统的图像处理方法,其检测精度和速度都不能满足零部件工厂需求。由于汽车零部件的残次率低,导致可用的数据量少,一般的深度学习模型不能很好地应用于汽车零部件表面缺陷检测。针对上述问题,提出一种基于机器视觉的小样本汽车零部件表面缺陷检测方法。上述方法在Faster RCNN检测网络基础上,采用指导框区域候选网络改进原有的区域候选网络,并且利用聚焦式损失函数来进一步改善正负样本不均衡的问题,同时加入循环特征金字塔结构以及组合特征关系检测器。在汽车零部件表面缺陷数据集和小样本FSOD数据集上的实验结果表明,小样本汽车零部件表面缺陷检测模型较好地实现了在小样本零部件数据条件下对零部件表面缺陷的检测。  相似文献   

11.
针对高分辨率液晶显示器产品(liquid crystal display, LCD)质量在线检测需求,基于深度学习提出一种LCD缺陷自动检测方法。通过设计自适应浅层特征提取层,并引入稀疏卷积结构,多维度、多尺度的提取深层特征,采用迁移学习和深度卷积生成对抗生网络扩充数据强化训练,构建基于小样本学习的LCD表面缺陷检测模型。其特征在于,采用设计的自动分割与定位预处理软件将高分辨率图像划分成适于卷积神经网络学习的图像子块,并根据模型对图像子块的判定类别和定位坐标,同时获取多类型缺陷检测结果。实验结果表明,本文模型可以有效提高检出率,并减少漏检率。  相似文献   

12.
当前导光板表面缺陷仍主要由人工肉眼观察进行检测,仅有少数生产厂家利用传统的图像处理方法进行检测.由于导光板缺陷在高分辨率工业相机拍摄的图像成像下仍极其微小,且不同缺陷的特征各异,以及整张导光板自身的导光点分布密集、不均匀等纹理特点,导致传统的图像处理检测方法需要经验丰富的视觉工程师进行大量的特征提取算法编程工作和昂贵的代码维护成本,准确率低且稳定性差,为此提出一种基于深度学习语义分割的缺陷检测方法.该方法通过训练神经网络的方式来自主学习提取导光板缺陷特征从而避免繁杂的特征提取算法编程工作.首先,对搜集的导光板缺陷进行缺陷标记,制作样本集;其次,利用迁移学习将预先训练好的金字塔场景解析网络(PSPNet)对标记样本进行再训练;进而,利用训练好的模型实现对导光板缺陷的检测;由于单独的深度学习语义分割缺陷检测方法通常无法满足工业实际应用需求,最后还需结合简单的机器视觉方法,对深度学习语义分割方法检出的所有疑似缺陷区域进行二次判断筛选.实验结果表明,该方法针对亮点、暗点和划痕3种缺陷的检出率高达96%,基本可以满足工业检测要求.  相似文献   

13.
余文勇  张阳  姚海明  石绘 《自动化学报》2022,48(9):2175-2186
基于深度学习的方法在某些工业产品的表面缺陷识别和分类方面表现出优异的性能, 然而大多数工业产品缺陷样本稀缺, 而且特征差异大, 导致这类需要大量缺陷样本训练的检测方法难以适用. 提出一种基于重构网络的无监督缺陷检测算法, 仅使用容易大量获得的无缺陷样本数据实现对异常缺陷的检测. 提出的算法包括两个阶段: 图像重构网络训练阶段和表面缺陷区域检测阶段. 训练阶段通过一种轻量化结构的全卷积自编码器设计重构网络, 仅使用少量正常样本进行训练, 使得重构网络能够生成无缺陷重构图像, 进一步提出一种结合结构性损失和L1损失的函数作为重构网络的损失函数, 解决自编码器检测算法对不规则纹理表面缺陷检测效果较差的问题; 缺陷检测阶段以重构图像与待测图像的残差作为缺陷的可能区域, 通过常规图像操作即可实现缺陷的定位. 对所提出的重构网络的无监督缺陷检测算法的网络结构、训练像素块大小、损失函数系数等影响因素进行了详细的实验分析, 并在多个缺陷图像样本集上与其他同类算法做了对比, 结果表明重构网络的无监督缺陷检测算法有较强的鲁棒性和准确性. 由于重构网络的无监督缺陷检测算法的轻量化结构, 检测1024 × 1024像素图像仅仅耗时2.82 ms, 适合工业在线检测.  相似文献   

14.
In machine learning driven surface inspection one often faces the issue that defects to be detected are difficult to make available for training, especially when pixel-wise labeling is required. Therefore, supervised approaches are not feasible in many cases. In this paper, this issue is circumvented by injecting synthetized defects into fault-free surface images. In this way, a fully convolutional neural network was trained for pixel-accurate defect detection on decorated plastic parts, reaching a pixel-wise PRC score of 78% compared to 8% that was reached by a state-of-the-art unsupervised anomaly detection method. In addition, it is demonstrated that a similarly good performance can be reached even when the network is trained on only five fault-free parts.  相似文献   

15.
口服液压盖过程,会出现压盖不良等情况,瓶盖可能会出现划痕、刮花、表面卷曲、压盖破损等缺陷,为保证食品药品安全必须在出厂前进行检测.在基于深度学习的口服液瓶压盖缺陷检测的研究过程中,使用传统卷积神经网络对口服液压盖缺陷数据集进行训练,需要进行人工标注,效率较低.为有效解决上述问题,设计出一种无监督学习的深度卷积去噪自编码...  相似文献   

16.
目前基于传统的机器视觉分析方法筛选后的PCB焊接缺陷图像还需要进行人工的复检流程,工作量大导致视觉疲劳后容易出错.为了改善这种现状,本文设计应用YOLOv3-spp的目标检测算法来构建焊接缺陷检测模型.为提升检测速度,采用模型剪枝、模型蒸馏、模型量化等技术对检测模型进行压缩优化,采用深度学习加速组件OpenVINO来加...  相似文献   

17.
芯片表面缺陷会影响芯片的外观和性能,因此表面缺陷检测是芯片生产过程中的重要环节。具有缺陷与背景对比度低、缺陷较小等特点的弱缺陷给传统检测方法带来了挑战。因为近年来深度学习在机器视觉领域展现出了强大的能力,所以文中采用基于深度学习的方法来研究芯片表面弱缺陷的检测问题。该方法将芯片表面缺陷看作噪音,首先应用卷积去噪自编码器(Convolutional Denoising Auto-encoders,CDAE)重构无缺陷图像,然后用重构的无缺陷图像减去输入图像,获得包含缺陷信息的残差图。因为残差图中已经消除了背景的影响,所以最后可以基于残差图较容易地进行缺陷检测。由于基于CDAE重构芯片背景的无缺陷图像时存在随机噪音,导致弱缺陷可能会湮没在重构噪音中,为此,文中提出了重叠分块策略抑制重构噪音,以便更好地检测弱缺陷。因为CDAE是无监督学习网络,所以训练时无需进行大量的人工数据标注,这进一步增强了该方法的可应用性。通过对真实芯片表面数据进行测试,验证了所提方法在芯片表面检测上的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号