首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Porous implants are known to promote cell adhesion and have low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of porous implants. Very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol (NiTi) alloy. In this article, we report high-cycle rotating bending fatigue response of porous NiTi alloys fabricated using Laser Engineered Net Shaping (LENS?). Samples were characterized in terms of monotonic mechanical properties and microstructural features. Rotating bending fatigue results showed that the presence of 10% porosity in NiTi alloys can decrease the actual fatigue failure stress, at 106 cycles, up to 54% and single reversal failure stress by ~ 30%. From fractographic analysis, it is clear that the effect of surface porosity dominates the rotating bending fatigue failure of porous NiTi samples.  相似文献   

3.
In the present work, a computer‐controlled test rig for simultaneous fatigue testing of several pseudoelastic NiTi wires through bending rotation is described. Bending rotation fatigue (BRF) testing represents a displacement‐controlled experiment where a straight wire is bent into a semi‐circle und forced to rotate around its axis. Thus, each point on the wire surface is subjected to alternating tension and compression. A test rig, which allows to control loading amplitudes, rotation frequencies and temperatures is described. We report preliminary results of an experimental program, which aims for a better understanding of fatigue lives, crack initiation, and crack growth in pseudoelastic NiTi wires. It was found that a good surface quality is of utmost importance to avoid early crack initiation. Wöhler curves of pseudoelastic NiTi wires typically show two different regimes depending on the maximum imposed surface strain during bending rotation fatigue testing. Larger strain amplitudes, which are associated with macroscopic formation of stress‐induced martensite, result in relatively low fatigue lives (LCF regime). In contrast, cycle numbers exceeding 107 were obtained for strain amplitudes where no large scale stress‐induced formation of martensite occurred (HCF regime).  相似文献   

4.
The use of NiTi in complex shaped components for structural applications is limited by the material cost and machinability and adequate joining techniques have been investigated to minimize the thermal cycle effect on the superelastic and shape memory effects exhibited by NiTi. Laser welding is the most used joining process for this material. However, existing studies mainly address the functional properties of laser welded NiTi wires, and the superelastic cycling tests are limited to either a low number of cycles (maximum 100) or to low strains (below 6%). This paper discusses the results of the cycling behavior exhibited by laser butt welded 1 mm thick NiTi plates, when tested to high strains (up to 10%) and for a large number of cycles (600). The superelastic effect was observed and the microstructural changes induced by the laser welding procedure, namely the extension of the thermal affected regions, were seen to influence the evolution of the accumulated irrecoverable strain. Thus, it is possible, by controlling the heat input introduced during welding, to tune the maximum superelastic recovery presented by NiTi laser welds.  相似文献   

5.
The fatigue property of dissimilar spot welds between an aluminium alloy (AA5052) and a magnesium alloy (AZ31) was studied in this research. The AA5052 and AZ31 coupons were resistance spot welded together by using an interlayer of Sn‐coated steel between the two coupons. The fatigue test results revealed that the Mg/Al joints had the same level of fatigue strength as Mg/Mg resistance spot welds. It was found that within the life range of Nf < 105 cycles, Mg/Al welds degraded faster than Mg/Mg joints. This was attributed to the larger bending moment on the plane of fatigue failure in the Mg/Al welds. Three failure modes were observed under different cyclic loading regimes: Al/steel interfacial failure, Mg coupon failure and Al coupon failure. Fatigue fracture surface of Mg/Al welds consisted of two distinct regions: crack propagation region with brittle morphology and final rupture with ductile morphology.  相似文献   

6.
Porous NiTi alloys are highly attractive for energy absorbers, damping devices and biomedical implants. In the present work, metal injection moulding (MIM) in combination with the application of a suitable space holder material was used for the production of NiTi parts with well defined pore sizes and porosities in the range of 30-70 vol.%. For comparing the properties, porous titanium and Ti-6Al-4V samples were prepared in the same manner.Focus of the present work was a detailed investigation of the mechanical properties of porous NiTi to estimate its potential regarding the abovementioned applications. For a Ni-rich NiTi alloy with a porosity of 50 vol.%, fully pronounced pseudoelasticity after 6% compression was demonstrated. An energy dissipation of 1.5 MJ/m3 was measured, which could be directly related to the reversible austenite-martensite phase transformation. At higher deformations, pseudoelasticity becomes more and more superposed by the onset of plastic deformation. Nevertheless, even at deformations of up to 50%, a clearly pronounced amount of pseudoelastic shape recovery still remained. Fatigue of pseudoelasticity was investigated by conducting of up to 230,000 load cycles to 4% compression at a frequency of 1 Hz.  相似文献   

7.
NiTi shape memory alloys showing pseudoelastic behaviour have great potential in dental and orthopaedic applications where constant correcting loads may be required. In most of the clinical applications the device may have been heat treated and during its life in service it will be cyclically deformed. It is therefore important to investigate the effect of cyclic straining and heat treatments upon the transformation stresses and temperatures of the material. The aim of this work is to study the thermal and mechanical ageing of a pseudoelastic NiTi shape memory alloy, as well as the environmental in vitro degradation of the alloy due to the effect of artificial saliva.This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials, Oporto, Portugal, 10–13 September.  相似文献   

8.
S960 steel is an advanced low carbon and low alloy ultra-high strength steel (with a minimum yield strength of 960 MPa) developed by Tata Steel. At present, there is a scarcity of data for laser welding of such a material. In this study, 8 mm thick hot rolled and quenched S960 high strength low alloy (HSLA) steel plates were welded using a 16 kW fibre laser system. The microstructure, microhardness, and tensile properties were characterised, Charpy impact testing and three-point bending testing were carried out, and fracture surfaces were investigated. Preliminary results suggest that the laser welding process can produce single-pass welds which are free of macroscopic defects. The microstructures in the fusion zone and heat affected zone were predominately martensite and some self-tempered martensite, with grain size variation in different sub-zones. The tensile properties of the laser welded joint matched those obtained for the base material, with failure occurring in the base material away from the weld. While the welded joint performed well when subjected to bending, the impact toughness was reduced when compared with that of the base material.  相似文献   

9.
This paper considers fundamental and experimental aspects associated with the engineering design of a medical, non‐linear drilling device which exploits shape memory pseudoelasticity of NiTi wires. For this application it is important that the NiTi wires have a good fatigue resistance. This is why the present authors have previously determined the influence of various parameters on cyclic life, crack growth and stress state of pseudoelastic wires subjected to bending rotation fatigue. The actual drilling device has to withstand twist in addition to bending rotation because the free rotation is constrained by friction between the drill head and the bone material. In addition, friction between the wire and a NiTi guiding tube results in wear and this may well promote fatigue crack nucleation. In this paper, we explain the function of the medical drill. We then report results on the effect of the additional parameters (1) twist and (2) wear on the fatigue life of thin pseudoelastic NiTi wires. We finally discuss the implications of our experimental results for the design process of the medical drilling device.  相似文献   

10.
Fatigue behaviour and endurance limit of graphite and of aluminium‐infiltrated graphite Fatigue properties of polycrystalline, isotropic graphite FU2590 and of FU2590 infiltrated with AlSi7Mg (FU2590/AlSi7Mg) were investigated in reversed bending tests at 25 Hz at numbers of cycles below 107 and in tension‐compression tests at 20 kHz below 109 cycles. The open porosity of Graphite (10‐11 Vol.‐%) was infiltrated with the aluminium alloy using the squeeze casting infiltration method, which led to an increase of the bending strength by 50 %, increase of tensile strength by 30 % and increase of stiffness by 15 %. Fully reversed tension‐compression loading of FU2590 delivers a mean endurance limit at 109 cycles at the normalized maximum stresses (i.e. maximum tension stress of a cycle divided by the static strength) of 0,65±0,03. Mean numbers of cycles to failure of 104 were found in fully reversed bending tests at the normalized maximum stress of 0,78. The infiltrated material shows approximately 30 % higher cyclic strength in reversed bending tests, and the mean endurance limit under tension compression loading increases by 15 %. The increased endurance limit of the infiltrated material is caused by the increased stiffness. The increased toughness of graphite due to the infiltration with aluminium is of additional beneficial influence at the higher cyclic stresses investigated in reversed bending tests and in static tests.  相似文献   

11.
This paper takes into account the localized deformation behaviour of a pseudoelastic NiTi shape memory alloy with finite element method. A three‐dimensional micromechanical model has been developed, in which the difference between the elastic properties of austenite and martensite is considered. The model is implemented as User MATerial subroutine (UMAT) into ABAQUS. Then, a polycrystalline NiTi shape memory alloy with [1 1 1] texture under tensile loading is simulated. The main features of the propagation of the deformation band reported in literatures are captured in the simulation. It is also shown that the initiation and propagation of the deformation bands are strongly affected by the geometry of the specimens.  相似文献   

12.
Several concepts are used for the fatigue design of welded joints. In this paper investigations are presented, which were carried out in a joint project between five research institutes [1]. The aim is to investigate currently applied fatigue concepts with respect to their limitations, compatibility and reliability, in order to improve the accuracy of lifetime estimation and to simplify the choice of the optimum fatigue concept. Here, the results of the investigation of welded joints in rotating universal joint shafts are shown [2]. In the critical weld, a structural steel and a quenched and tempered steel are joined. In practice, stresses result from rotating bending, torsion and also residual stresses are sometimes present. Several welding techniques, MAG, TIG and laser welding, and two seam geometries were investigated with regard to their influence on fatigue strength. Experiments were conducted with welded tube specimens representative of the actual component application and with derived flat specimens as detail specimens. The welded sheet thickness was 5.5 mm. Fatigue strength was investigated from 104 to 107 numbers of cycles. In numerical analyses, nominal stress, structural hot spot stress and elastic notch stress with reference radii of 0.3 mm and 0.05 mm were calculated. In the comparison of the concepts, their respective advantages and disadvantages have been demonstrated. A comparison of the results with the IIW recommendation for fatigue design of welded joints and components [3] has been carried out and improvements have been suggested.  相似文献   

13.
Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete.  相似文献   

14.
Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete. r 2007 Published by Elsevier Ltd.  相似文献   

15.
Laser welding would be a suitable joining technique for NiTi shape memory alloy if the mechanical properties of laser weld were improved. With this purpose, effects of additive on mechanical properties of laser-welded NiTi alloy have been experimentally studied. Welding specimens used in this study were 2 mm thick hot-rolled plates with a chemical composition of Ni50.9Ti49.1. (Ni50.9Ti49.1)-Ce2 (at.%) alloy foil or Ni47Ti44Nb9 plate was used as filler metal to add Ce or Nb element into NiTi laser weld metal. Both tensile strength and the toughness of additive-welding specimens were improved significantly compared with non-additive-welding specimen. The mechanical property improvement was attributed to the fine solidification NiTi grains and good grain-linking in weld center. The microstructure control mechanisms of these two additive welds were discussed.  相似文献   

16.
In this paper laser beam welding (LBW) was used to join Ti–6Al–4V alloy as a pre-forming operation before superplastic deformation (SPF) process. Superplastic deformation behavior of laser welded Ti–6Al–4V alloy was investigated. The results indicated that the welded Ti–6Al–4V alloy had good superplasticity when deformed at temperature range of 870–920 °C and strain rate range of 10−3–10−2 s−1, and the elongation was 233–397%. The microstructure observation indicated that dynamic recrystallization happened in the weld bead, and the acicular structure of weld bead was transforming into equiaxed grains during tensile process.  相似文献   

17.
Crack propagation in ultra-high-strength steels and their welded joints under dynamic loading . Reported are results of investigation into the propagation of cracks in the base metal and weld metal of an ultra-high-strength steel. The material used in the investigations was a Ni? Co? Mo? alloy maraging steel with a yield point of 170 kp/mm2. The steel was arc welded and TIG welded. The joints exhibited a drop of static strength in the range of 5 to 8 percent related to the base metal. Under zero-to-tension stress cycles the fatigue strength corresponded that of other high-strength steels, under tension-compression stress cycles the steel exhibited a higher fatigue strength. It was possible to show striations with the aid of scanning microscopy. Comparing the track propagation calculated in the microscopic range with the results obtained from the crack growth curves produced approximate agreement.  相似文献   

18.
Y.G. Song  L. Li 《Materials Letters》2008,62(15):2325-2328
The Nd:YAG laser welding was used to join the binary NiTi alloy wires with different compositions(Ti-50.0 at.%Ni and Ti-50.9 at.%Ni) which had the same diameter of 1 mm. The wires were welded with different parameters, including impulse width and welding current. The aim was to assess the influence of the laser-welding process on the microstructure and mechanical properties of the welded joint of binary NiTi wires. The optical microscopy (OM) and the metallographic microscopy (MM) were used to analyze the microstructure of the welded joints. The tensile test and the differential scanning calorimetry (DSC) were carried out to examine the ultimate tensile strength and the reverse martensitic transformation temperatures of the welded joints. It was found that the welding current and the impulse width had great influence on the quality of the welded joints, an optimal parameter combination would remove the pores and micro-cracks appeared in the fusion zone, and result in good mechanical properties such as higher fracture strength and elongation. The laser welding had a few effect on the reverse martensitic transformation temperatures of the welded joints.  相似文献   

19.
The creep of PT-3V titanium alloy and of a butt welded joint in this alloy (PT-2V filler material) was investigated on cylindrical specimens 7 mm in diameter with a gage length of 50 mm. The plane of the weld 10-mm wide, produced by manual submerged-arc welding, was situated in the center of the specimen in the direction normal to its longitudinal axis. The results show that in the examined cyclic stress amplitude range the preliminary cyclic loading lasting 5·10 4 cycles with a frequency of 35 Hz increases the cyclic creep limit of PT-3V alloy by 11% and the static creep limit of the welded joint by 19%. This variation of the mechanical properties can be regarded as one of the reasons for the positive effect of the vibrotreatment technology, used in industry, leading to stabilization of the dimensions and form of components.Translated from Problemy Prochnosti, No. 4, pp. 27–33, April, 1996.  相似文献   

20.
This paper presents two‐dimensional information on the residual stresses in 8 mm 5383‐H321 aluminium plates joined by double pass (DP) friction stir welding (FSW). It considers the inherent variability in residual stress magnitudes along 0.5 m lengths of weld pass, and their modification under a sequence of applied fatigue loads. This represents one of a planned series of experiments aimed at illuminating the effects of fatigue cycling on residual stress fields. In this particular case, the magnitudes of the bending fatigue loads (R= 0.1) were chosen to correlate with the measured proof strengths of the weld metal (approximately 160 MPa) and the parent plate (approximately 260–270 MPa). In four‐point bend S–N tests at R= 0.1 on 40 mm wide FS welded specimens of this alloy and plate thickness, these peak stress levels correspond to lives of around 105 cycles and 107 cycles, respectively. Results from the work indicate that significant variability exists among welded plates in peak compressive stress magnitudes (a range of perhaps ?50 MPa to ?140 MPa), although peak tensile stresses were relatively low and more consistent (from around 0 to 30 MPa). Fatigue loading accentuates the peak‐to‐valley stress change and causes an overall translation of the stresses to become more positive. Peak tensile stresses increase several‐fold during fatigue cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号