首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘红 《铸造技术》2014,(3):596-598
采用电阻焊方法实现对A6061铝合金和Q235钢的焊接。采用显微硬度计测试焊接接头显微硬度,采用SEM、EDS等方法分析焊接接头界面显微结构和元素组成,研究了点焊接头的缺陷形式。结果表明,铝合金/钢点焊接头主要由靠近Q235侧和靠近铝合金侧两层金属间化合物构成。化合物层主要为Al-Fe金属间化合物,其显微硬度高于基体。采用合适的点焊工艺,可以避免电阻焊接头中未焊合、裂纹、缩孔等缺陷的产生。  相似文献   

2.
耐高压钛-不锈钢爆炸复合过渡接头的成功研制,使不可采用熔化焊的两种金属的连接变成为同种金属间的焊接,为工程应用解决了非常棘手的问题。通过金相、扫描电镜、透射电镜以及力学性能测试分析,结果表明耐高压爆炸复合接头棒界面为固态下的冶金结合,优化爆炸复合工艺后,接头棒界面无明显金属间化合物形成,钛侧孪晶数量与原工艺相比增多,不锈钢侧位错数量较原工艺相比明显减少,材料塑韧性得到改善,界面强度能够达到300 MPa以上,可以承受30 MPa的常温气压检验,并且70 MPa的液压试验无泄漏无变形。  相似文献   

3.
采用冷金属过渡(CMT)焊对异种金属T2和1060Al进行焊接,选用S301、ER4043、ER4047 3种焊丝作为填充材料,研究在适当工艺参数下,焊丝成分对焊接接头组织、相组成、界面化合物形态及硬度的影响。结果表明:3种焊丝焊接的接头均由焊缝区、结合区、熔合区组成,且靠Cu侧的焊缝结合区均生成了较厚的界面化合物层。结合区的组织主要为(α-Al+Cu Al2)共晶和Cu Al2金属间化合物相,当采用含Si量12.0%的ER4047焊接时结合区还析出了块状Si。焊丝中添加Si元素,抑制了靠Cu侧焊缝区界面化合物生长,并改变了化合物形态。同时,界面化合物生成,也导致3种焊缝均在靠Cu侧出现显微硬度的高峰区。  相似文献   

4.
填充金属对钛合金与不锈钢电子束焊接的影响(英文)   总被引:1,自引:0,他引:1  
采用Ni、V、Cu等填充材料进行钛合金与不锈钢的电子束焊接实验。采用光学显微镜、扫描电镜及X射线衍射对接头的微观组织进行分析。通过抗拉强度和显微硬度评价接头的力学性能,分析讨论填充材料对钛/钢电子束焊接接头微观组织和力学性能的影响。结果表明:填充材料有助于抑制Ti-Fe金属间化合物的产生。所有接头均由固溶体和界面化合物组成。对于不同的填充材料,固溶体和界面化合物种类取决于填充材料与母材之间的冶金反应。对于Ni、V及Cu填充材料,界面化合物分别为Fe2Ti+Ni3Ti+NiTi2,TiFe和Cu2Ti+CuTi+CuTi2。接头抗拉强度主要取决于金属间化合物的脆性。采用Cu填充金属的接头抗拉强度最高,约为234 MPa。  相似文献   

5.
由于钛与钢焊接互熔时所产生的中间化合物是脆性组织,所以钛钢复合板在焊接安装中,基层碳钢与复层钛板不具有良好的异种金属的焊接性,所以在接头设计及焊接工艺制定中都需要采取一些特殊的措施.本文结合火力发电厂烟囱钢内筒钛钢复合板的焊接试验研究与施工过程控制,对该焊接工艺进行了较为详细的介绍.  相似文献   

6.
文中采用Zn-Al22药芯焊丝实现了4 mm厚5083铝合金与E36钢异种材料的TIG熔钎焊。重点研究了焊接电流对铝/钢熔钎焊接头成形、界面金属间化合物以及抗拉强度的影响。结果表明,熔钎焊接头钢侧界面生成了η-Fe_2Al_5Zn_x金属间化合物层,其中还分布有少量δ-FeZn_(10)相;随着焊接电流逐渐增大,焊缝金属在E36钢表面的润湿铺展逐渐提升,熔宽逐渐增大,η-Fe_2Al_5Zn_x金属间化合物层增厚,δ-FeZn_(10)相也随之增多;当焊接电流超过120 A时,界面层生成Fe-Zn金属间化合物层;较薄的η-Fe_2Al_5Zn_x金属间化合物层和分布在η-Fe_2Al_5Zn_x层中的δ-FeZn_(10)有助于提高接头抗拉强度;铝/钢熔钎焊接头均断裂于钢侧界面,当焊接电流为110 A时,接头抗拉强度达到最大值120 MPa。  相似文献   

7.
以钎焊、压焊和熔焊为研究主体,综述了钒合金与钢的连接技术研究进展.现有的研究成果表明,钒合金与钢的连接存在着很大的难度,材料表面氧化膜、结合界面形成的脆性金属间化合物是影响接头性能的关键.解决的有效途径是:选择合适的中间层材料,如Au-Ni,V,Nb等,可以很好地润湿钒合金与钢以提高接头性能;采用爆炸焊或摩擦焊的固相连接手段,避免金属的熔化;采用熔化低熔点金属润湿-钎接高熔点金属的方法精确控制材料之间的反应,将产生金属间化合物的可能性降至最低,以实现异种金属间的可靠连接.  相似文献   

8.
采用电阻凸塞焊新方法对A6061铝合金和Q235低碳钢进行焊接,观测了接头微观形貌并检测了接头特征区域的化学成分,对接头的力学性能进行了测试。结果表明:在电阻凸塞焊中,以钢/钢同种材料界面取代铝/钢异种材料界面实现了接头的可靠连接,避免了在焊接接头产生较多脆性的金属间化合物。与普通点焊的接头相比,电阻凸塞焊接头的力学性能有明显的提升;工艺孔直径为10.0 mm时,接头最大抗剪力达到6.28 kN,接头断裂属于塑性断裂。对于铝合金/钢异种材料的连接,电阻凸塞焊是一种有效的工艺方法。  相似文献   

9.
为了有效实现车身上的钢/铝复合结构连接,提出了一种新型的焊接与连接技术?感应-静压焊(induction-pressure welding,IPW). 通过光学显微镜、电子扫描显微镜对钢/铝合金连接界面的组织形貌进行观察,通过X射线色散能谱仪、X射线衍射仪及显微硬度计测试了钢/铝连接界面的化学成分、金属间化合物种类以及显微硬度. 结果表明,采用感应-静压焊工艺可以实现Q235钢与5052铝合金的有效连接. 接头界面上1、2号试样的金属间化合物平均厚度分别为115,85 μm. 接头界面的微观组织形貌呈锯齿状,并且组织向钢侧生长. 接头界面组织的硬度明显高于两侧钢铝基体组织的硬度,1,2号试样接头的抗拉强度分别为49,158 MPa. 同时,在整个感应-静压焊工艺过程中,随着加热温度的降低,金属间化合物厚度呈线性减少. 此外,还发现铝原子的扩散能力显著高于铁原子. 故而,在钢/铝感应-静压焊接头界面生成了富铝的金属间化合物Fe2Al5和FeAl2.  相似文献   

10.
通过添加钒/镍复合中间层,在1 050℃/10 MPa/1 h的工艺条件下,对钨/钢异种材料进行真空扩散焊接.采用扫描电镜(SEM)、能谱仪(EDS)、电子探针(EPMA)、纳米压痕、X射线衍射对接头的微观组织、元素分布及显微硬度进行分析和测试;对焊接接头的拉伸性能进行测试,并对拉伸断口的形貌特征,元素分布及物相组成进行分析.结果表明,采用钒/镍复合层可实现钨与钢的可靠焊接;钨/钢焊接接头界面区由钨-钒固溶体层、未反应的钒层、钒-镍界面层、未反应的镍层、镍-铁固溶体层五部分组成,其中钒-镍界面层结构为碳化钒层/钒-镍金属间化合物和碳化钒混合层/钒-镍金属间化合物层;钒/镍界面由于硬脆碳化物与金属间化合物的产生,具有最高的显微硬度,硬度高达9.7 GPa;接头强度达164 MPa,断裂点位于含脆性相碳化钒及钒-镍金属间化合物的钒/镍界面.  相似文献   

11.
在最优焊接参数下,对1 mm DP600镀锌钢板和3 mm AZ31镁板进行无匙孔搅拌摩擦点焊试验,焊后对接头分别进行横切、纵切及层切,采用扫描电镜(SEM)分析焊接接头显微组织和断口形貌.结果表明,镁钢间的混合主要发生在搅拌针作用区域,形成"机械互锁"的组织形貌,有利于增加两种材料的有效接触,形成复相强化;轴肩作用区镁钢间搅拌不明显,界面较平滑,镁钢界面形成了金属化合物以及氧化镁,降低了接头的塑性和韧性.对DP600/AZ31无匙孔搅拌摩擦点焊焊接接头进行拉伸试验,发现焊接接头从搭接界面上断裂,断口呈"脉状花样",为延性断裂.  相似文献   

12.
在最优焊接参数下,对1 mm DP600镀锌钢板和3 mm AZ31镁板进行无匙孔搅拌摩擦点焊试验,焊后对接头分别进行横切、纵切及层切,采用扫描电镜(SEM)分析焊接接头显微组织和断口形貌.结果表明,镁钢间的混合主要发生在搅拌针作用区域,形成“机械互锁”的组织形貌,有利于增加两种材料的有效接触,形成复相强化;轴肩作用区镁钢间搅拌不明显,界面较平滑,镁钢界面形成了金属化合物以及氧化镁,降低了接头的塑性和韧性.对DP600/AZ31无匙孔搅拌摩擦点焊焊接接头进行拉伸试验,发现焊接接头从搭接界面上断裂,断口呈“脉状花样”,为延性断裂.  相似文献   

13.
电极板辅助点焊钢/铝异质接头的组织与性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用电极板辅助点焊进行了H220YD高强钢与6008-T66铝合金异种金属的连接,研究了接头的微观组织和力学性能.结果表明,焊接接头是通过液态铝合金在钢/铝界面处对高强钢的润湿铺展而形成的,本质上属于熔-钎焊接头.钢/铝界面上生成了由Fe2Al5和FeAl3组成的金属间化合物层.接头中铝合金熔核直径在焊接电流为14kA、焊接时间为300 ms时达最大值为9.5 mm.接头拉剪力随焊接电流的增加先迅速增大后趋于稳定,当焊接电流为12 kA、焊接时间为300 ms时达4.3 kN,比不加电极板时提高约30%.在接头拉剪过程中裂纹的扩展路径不仅沿着金属间化合物,还部分经过铝合金熔核内部.  相似文献   

14.
郭顺  罗添元  彭勇  周琦  朱军 《焊接学报》2019,40(8):26-32
为了获得高强度T2铜和Ti-6Al-4V钛合金异种金属接头,采用电子束焊方法开展试验,并对接头界面组织及力学性能进行了分析.试验在钛/铜熔钎焊接基础上,通过在高熔点钛侧复合二次焊接,构建钛/铜结合界面金属间化合物层的重熔温度场,进而实现钛/铜金属间化合物层的重熔改性.通过有限元温度场模拟及SEM,XRD等检测.结果表明,钛侧重熔焊接可在结合界面处形成1 000℃左右高温,金属间化合物层发生局域重熔.在随后凝固过程中,由于散热方向及元素再分配,相的形成顺序发生改变,钛原子向铜侧的扩散距离减短,高硬度相TiCu向Ti2Cu转变,相结构优化,最终接头强度得以提升.  相似文献   

15.
用真空扩散焊接方法焊接铝合金和不锈钢。采用物相分析仪、描电镜、显微硬度计和万能试验机等对焊接接头结构和性能进行了分析。结果表明,通过扩散焊接能实现铝合金和不锈钢的焊接,获得的焊接接头界面结合良好。随着焊接温度升高,扩散层厚度增加,焊接温度550℃时扩散层出现裂纹。铝合金和钢界面处生成了高硬度相,主要为Fe2Al5和Fe4Al13金属间化合物。铝/钢焊接接头剪切强度随焊接温度增加呈先增加后减小的趋势,焊接温度500℃,保温时间3 h,得到接头剪切强度最大值为54 MPa,断裂方式为解理断裂。  相似文献   

16.
于得水  张岩  周建平  毕元波  鲍阳 《焊接》2020,(11):37-45
对钛/铝异种金属焊接过程中脆性Ti-Al金属间化合物的控制方法进行了综述,介绍了熔化焊(激光焊、电子束焊)、钎焊、熔钎焊、扩散焊、搅拌摩擦焊及爆炸焊的研究现状,并对存在的问题与发展趋势进行了讨论。结果表明,钛/铝焊缝中极易形成脆性的Ti-Al金属间化合物,导致钛/铝接头强度的降低。在激光焊、电子束焊过程中,通过热源偏移的方式可以降低Ti-Al金属间化合物含量;采用合理的中间层,既能降低Ti-Al金属间化合物的含量又能形成塑性更好的金属间化合物。采用熔钎焊工艺并选用合适的填充材料,可以有效地抑制Ti-Al金属间化合物的生成。采用扩散焊工艺、通过添加中间层、在钛表面渗铝及合理控制工艺参数,能有效减少Ti-Al脆性金属间化合物的生成,但接头的抗拉强度不高。采用搅拌摩擦焊并通过添加中间层抑制钛/铝接头中Ti-Al脆性金属间化合物的形成,获得性能良好的钛/铝接头,但会受到焊件的形状的影响。采用爆炸焊工艺,可以细化界面中的金属颗粒,提高钛/铝接头的强度。  相似文献   

17.
陈满乾  刘亚芬 《焊接》2007,(8):53-55
钛钢复合板既可充分发挥基层和覆层各自材料的优点,也是节约贵金属最好的途径,具有明显的社会效应和经济效应,值得进一步应用推广.通过分析TA2和Q235B的焊接性,论述了钛与钢熔焊焊缝脆裂的机理,指出钛钢复合板焊接性能差的主要原因在于焊缝中产生了脆性的金属间化合物,从而导致焊缝在焊接应力的作用下发生开裂.根据钛钢复合板焊接的特点,通过大量的试验研究,作者提出了合理的钛钢复合板焊接接头形式和完善的焊接工艺措施,同时加强对施焊人员的培训管理,严格焊接全过程的控制,TA2/Q235B钛钢复合板的焊接难题得到成功解决.  相似文献   

18.
近来铝合金/钢、铝合金/钛合金等异种金属的连接在汽车等行业越来越受到重视。但是采用熔化焊来连接异种金属非常困难,同时扩散焊的效果也不很理想,主要是因为焊接过程中在界面处会产生较多的脆性金属间化合物。因此,急需一种高可靠性、高效率的新工艺对此类异种材料进行高质量的连接。激光滚压焊正是针对这一需求而开发的新型连接工艺。详细介绍了该工艺方法的提出背景、工作原理、界面上金属间化合物的特点以及所得到焊接接头的主要性能。  相似文献   

19.
采用脉冲旁路耦合电弧(DE-GMAW MIG)熔钎焊和ER5356铝合金焊丝对1060铝/Q235镀锌钢异种金属进行了搭接焊。用浸泡腐蚀试验和电化学腐蚀试验对焊接接头的腐蚀行为进行了研究,分析了焊接热输入对焊接接头腐蚀性能的影响。通过SEM并结合EDS对接头的腐蚀形貌和表面腐蚀产物进行了观察与分析。结果表明:铝/钢焊接接头处出现了显著的电偶腐蚀,且随着焊接热输入的增大,焊接接头的耐腐蚀性能下降。铝/钢焊接接头界面反应层金属间化合物的形成对铝/钢焊接接头的腐蚀性能是不利的,应尽量避免形成过多的界面层金属间化合物。  相似文献   

20.
采用316L不锈钢薄板与6063铝合金板作为焊接材料进行纳秒脉冲激光搭接焊接试验,分析了激光扫描路径和激光参数对铝/钢纳秒脉冲激光焊接头界面形貌特征及金属间化合物相组成的影响,并对接头力学性能进行试验.试验结果表明,在靠近钢侧焊缝产生了 Fe3Al及FeAl化合物,靠近铝侧为FeAl3,Fe2Al5,FeAl2化合物....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号