首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
高分子絮凝剂对膜生物反应器的影响研究   总被引:1,自引:0,他引:1  
通过烧杯试验考察了混合液CODCr及浊度的变化,确定了高分子絮凝剂的最佳投量为100 mg/L.之后通过平行对比试验研究了其对膜生物反应器的影响.结果表明,投加100 mg/L的高分子絮凝剂,对MBR出水水质没有明显的改善;混合液CODCr含量相当,但其波动相对较小;EPS含量亦相当.以单位膜面积处理单位水量时过膜阻力的增加量表征膜污染速率,高分子絮凝剂投加前后膜污染速率分别为0.84 kPa/m,0.67 kPa/m.分析表明,高分子絮凝荆通过增大污泥絮体尺寸,使EPS聚集成团,从而达到延缓膜污染的作用.  相似文献   

2.
以聚氯化铝(PACl)为无机絮凝剂,考察PACl的投加对长期运行的A/O -MBR中污染物去除效果、膜污染速率、污泥混合液性能、以及溶解性微生物产物(SMP)及胞外聚合物(EPS)含量的影响。首先通过烧杯试验确定A/O -MBR中最佳PACl投加量为400 mg/L。采用两套A/O -MBR长期对照运行结果表明,PACl的投加提高了反应器对总磷的去除效果及污泥沉降性能,并降低了膜污染速率。投加PACl反应器中污泥平均粒径由124.59μm增加到159.43μm ,降低了胶体及小颗粒物质的比例,同时PACl对SM P中多糖的吸附也是降低其膜污染速率的主要原因之一。  相似文献   

3.
采用高锰酸盐复合药剂(PPC)预氧化—混凝—沉淀—超滤组合工艺处理黄河下游引黄水库夏秋季节高藻水。工艺优化试验结果表明:当处理高藻水时,聚氯化铝最佳投加量为4mg/L,PPC最佳投加量为0.6mg/L。进行了混凝—沉淀—超滤和PPC预氧化—混凝—沉淀—超滤工艺中试比较,结果表明:两种工艺均能将出水浊度控制在0.1NTU以下;投加0.6mg/LPPC能使组合工艺对原水UV254和藻类的平均去除率分别提高10%和28%。将PPC预氧化技术和超滤技术联用,具有协同除污染作用,降低进入膜表面的污染负荷,缓解膜污染。  相似文献   

4.
臭氧—平板陶瓷膜新型净水工艺中试研究   总被引:1,自引:0,他引:1  
为应对饮用水源受到的有机物和氨氮的复合污染,对混凝—臭氧/陶瓷膜—活性炭池新型净水工艺进行中试研究。结果表明,臭氧可以在线控制膜污染,臭氧投加量2mg/L,间歇提高臭氧投加量至5mg/L时,陶瓷膜跨膜压差在通量100L/(m2·h)下运行5d后增长小于2kPa。臭氧促进了陶瓷膜对颗粒物的去除,投加臭氧时膜出水中大于2μm粒径的颗粒数低于10个/mL。新型净水工艺能有效去除受污染原水中的有机物和氨氮,工艺对UV254的去除率为65%~95%,CODMn去除率为71%~98%,出水CODMn低于0.5mg/L;原水氨氮3.5mg/L时,工艺出水氨氮0.1mg/L,且无亚硝态氮积累,氨氮基本转化为硝态氮。此外,新型净水工艺对卤乙酸生成势的去除率高于85%,大大提高了工艺出水的安全性。实现了传统工艺与深度处理工艺的叠加集成,对水厂升级改造具有重要意义。  相似文献   

5.
针对高氨氮、高有机物污染的淀浦河原水进行了高锰酸钾、高锰酸钾复合盐(PPC)预氧化研究。结果表明,高锰酸钾的除锰效果优于高锰酸钾复合盐,高锰酸钾最佳投加量为1.0mg/L,此时出水中锰的平均浓度由0.34mg/L降至0.09mg/L,当投加量大于1.5mg/L时,出水锰含量开始反弹;高锰酸钾复合盐的最佳投加量为1.5mg/L,并且在0-3mg/L的投加量范围内,出水锰含量没有发生反弹。高锰酸钾复合盐的助凝效果优于高锰酸钾,当高锰酸钾及其复合盐的投加量分别为1.0mg/L和1.5mg/L时,助凝效果最好(剩余浊度去除率分别提高31.6%和41.8%).高锰酸钾及其复合盐对UV254和耗氧量没有明显去除效果,两者均会增加出水色度。综合考虑处理效果与助凝剂使用成本,认为试验期间的淀浦河原水更适合采用高锰酸钾预氧化技术。  相似文献   

6.
投加活性炭膜污染控制的研究   总被引:2,自引:0,他引:2  
比较了不同粒径(20~40目、40~60目、80目、100~150目)的活性炭对膜生物反应器减缓膜污染的效果,粒径确定后比较不同投加量(0、1g/L、2g/L)对膜生物反应器膜通量的影响,结果表明:粒径过大或过小都不利于减缓膜污染,本试验适宜的活性炭粒径为40~60目;1g/L的颗粒活性炭膜通量下降比较缓慢,2g/L的活性炭反而会加剧膜污染。活性炭减缓膜污染的主要原因是改善了活性污泥混合液的性能,阻碍污泥层在膜面的形成。  相似文献   

7.
研究了污泥龄对城市二级出水直接进行微滤处理的影响。试验表明:延长污泥龄,二级出水的COD_(Cr)变化不大,稳定在40~60 mg/L,但出水SS有所增加。污泥龄对生化反应池内的胞外聚合物(EPS)含量有较大影响,出水粘度和EPS含量有很好的相关性。过长的污泥龄(>20 d)增加了二级出水的粘度与细微颗粒含量,使微滤膜过滤阻力增大,透过微滤膜孔微细颗粒的增多是膜系统产水污染指数(SDI)升高的主要原因,对于城市污水,只要控制生化污泥龄在20 d以下,二级出水就可以经连续微滤后,再进行反渗透、纳滤等深度处理。  相似文献   

8.
采用高锰酸钾强化混凝—陶瓷微滤膜集成工艺处理水源水,主要考察了不同高锰酸钾投加量对集成工艺中膜污染状况和出水水质的影响。结果表明,在混凝过程中投加高锰酸钾进行预氧化,与单独的混凝—陶瓷微滤膜集成工艺相比,膜污染速率下降,降低了不可逆膜污染;出水水质得到一定程度的提高,其中UV254、CODMn、DOC、TN去除率分别提高了约3%、10%、5%、16%。另外,出水浊度<0.1 NTU,出水颗粒数水平也得到了很大改善。  相似文献   

9.
福建九龙江流域给水厂污泥脱水性能的试验研究   总被引:3,自引:0,他引:3  
根据九龙江流域给水厂污泥的颗粒性质,进行絮凝、污泥比阻和过滤试验,研究污泥的脱水性能。试验结果表明,适当投加聚丙烯酰胺可以降低污泥比阻,改善脱水性能。其中阴离子型聚丙烯酰胺对该地区水厂污泥的调理效果较好,PAM投加范围以低于0.5‰为佳,不仅可以降低运行成本,而且在改善污泥的脱水性能及上清液水质的回用效果上,均可以达到最佳的状态。  相似文献   

10.
投加氢氧化铁对膜生物反应器性能的改善   总被引:9,自引:0,他引:9  
向浸没式膜生物反应器中投加氢氧化铁絮体,经过驯化和培养,形成生物铁污泥,以提高膜生物反应器的处理效果,减缓膜污染。从对模拟印染废水的处理效果来看,生物铁污泥MBR和普通污泥MBR对COD的去除率分别为93%和91%,对废水染料的去除率分别为92%和85%;同时,通过高差以及污泥照片的测定和观察,可以看出生物铁污泥对于防治膜污染起到了重要的作用。  相似文献   

11.
This paper deals with the performance of hybrid membrane bioreactor (MBR) combining the precoagulation/sedimentation and membrane bioreactor. The hybrid MBR not only produces the treated water with excellent permeate quality but also shows much lower membrane fouling than the conventional MBR. It may come from its extremely low F/M ratio to maintain the low viscosity even in the high MLSS concentration range of about 20,000 mg/L. Some results of microbial community analysis in MBRs was conducted to demonstrate the other reason for its lower membrane fouling. Hybrid MBR has a high potential to be used for the recycling use of the municipal wastewater. Coagulated sludge produced in the hybrid MBR is a promising phosphorus resource. This paper also contains a recent progress of phosphorus recovery technology, which uses a new phosphoric acids absorbent, i.e. the hexagonal mesostructured zirconium sulfate (ZS). The ZS has the extremely high adsorption capacity of phosphoric acids through anion exchange. The adsorbed phosphoric acids are released from the ZS in a high pH range of about 13.  相似文献   

12.
采用共沉淀法制备了一种磁性Fe3O4/CNTs(碳纳米管复合物),采用XRD、SEM、VSM等对Fe3O4/CNTs复合材料的晶相、颗粒大小和磁性能进行了表征。以刚果红染料废水处理为例,研究了不同处理工艺、催化剂投加量、溶液p H、催化剂重复使用等因素对Fe3O4/CNTs材料光催化脱色刚果红染料废水效果的影响。结果表明,当刚果红染料起始质量浓度为10 mg/L,用量为0.2 g/L,3%的H2O20.2 m L,光照50 min后,Fe3O4/CNTs对刚果红溶液的脱色率达到97.0%。催化剂重复使用第4次,对刚果红染料的脱色率仍可达87%以上。此外,Fe3O4纳米粒子的存在使Fe3O4/CNTs材料具有较强的磁性,且可通过外加磁场将其从处理后的水体中快速分离回收。  相似文献   

13.
In this study, the impact of sludge retention time (SRT) on sludge characteristics and microbial community and the effect on membrane fouling in membrane bioreactor (MBR) was investigated. The results show that MBR with longer SRT has less fouling propensity, in agreement with other studies, despite the fact that the MBR with longer SRT contained higher MLSS and smaller particle size. However, much more soluble microbial products (SMPs) were released in MBR with shorter SRT. More slime on the membrane surface was observed in MBR with shorter SRT while sludge cakes formed on the membrane surface in MBR with longer SRT. The results show that SMP contributes to the severe fouling observed in MBR with shorter SRT, which is in agreement with other studies showing that SMPs were the major foulants in MBR. Under different SRTs of operation, the bacterial community structures of the sludge obtained by use of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were almost identical, but those on the membrane surface differed substantially. It suggests that, although SRT has impact on sludge characteristics, it doesn't affect the microbial community in the suspension.  相似文献   

14.
This study focuses on a hybrid process, which combines adsorption on powdered activated carbon (PAC), membrane separation using immersed hollow fibers and biological activity. The first part shows that PAC addition in a complex system (containing dissolved molecules and biological particles) can reduce membrane fouling. In that system, DMP removal is function of the activated carbon concentration. Then, respirometric experiments allowed comparison of toxic sensitivity and biological degradation of different bioreactors (membrane bioreactor (MBR), adsorptive membrane bioreactor (PAC-MBR) and classical activated sludge bioreactor (AS)). Results point out that MBR sludge is less sensitive to the toxic than the AS. For high toxic concentration, PAC addition in the MBR decreases rapidly the toxic concentration under the EC50 in the bioreactor, which allows a better biodegradation of the toxic compound. DMP assimilation is completed more rapidly with the PAC-MBR than the MBR.  相似文献   

15.
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.  相似文献   

16.
A new sludge treatment process combining a high MLSS membrane bioreactor with sludge pretreatment techniques was studied in pilot-scale experiments. The membrane bioreactor (MBR) was adopted for high efficiency aerobic digestion. The combination of alkaline-ozone treatment of the mixed liquor in the MBR reactor accelerated the biodegradation process by enhancing biodegradability of the sludge. The hydraulic retention time (HRT) of the reactor was set as 3.1 days and the DO level was 1 mg/L on average. After 5 months of operation, the accumulative total solids reduction was more than 70%. Removal efficiency of volatile solids and non-volatile solids were 76% and 54%, respectively. It was found that a considerable portion of the non-volatile solids was dissolved into ions and then flushed out with the effluent. Also, about 41% and 28% of T-N and T-P in the raw sludge were removed although no biological nutrient removal process was adopted. The experiment was run smoothly without significant membrane fouling, even at the relatively high levels of MLSS concentration (11,000-25,000 mg/L). It is concluded that the newly proposed process can significantly increase the sludge reduction efficiency with much shorter retention times.  相似文献   

17.
Fe3O4 magnetic xerogel composites were prepared by polycondensation of resorcinol (R)–formaldehyde reaction via a sol–gel process in an aqueous solution through varying the molar ratio of Fe3O4 nanoparticles (MNPs), catalyst (C), and water (W) content. MNPs were obtained by co-precipitation (MC), oxidation of iron salts (MO), or solvothermal synthesis (MS). Both MNPs and magnetic xerogels were examined regarding the performance of arsenic and fluoride removal in a batch system. The MC-based MNPs had higher adsorption capacities for both fluoride (202.9 mg/g) and arsenic (3.2 mg/g) than other MNPs in optimum conditions. The X-ray diffraction, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy confirmed that Fe was composed into the polymeric matrix of magnetic xerogels that contained 0.59%–4.42% of Fe with a molar ratio of MNPs (M) to R between 0.01 and 0.10. With low R/C and optimum M/R ratios, an increase in the surface area of magnetic xerogels affected the fluoride and arsenic adsorption capacities. The magnetic xerogel composites with the MC-based MNPs prepared at a fixed R/C ratio (100) and at different R/W (0.05–0.06) and M/R (0.07–0.10) ratios had a high arsenic removal efficiency of 100% at an As(V) concentration of 0.1 mg/L and pH of 3.0. The maximum adsorption capacities of magnetic xerogels were approximately five times higher than those of the xerogels without MNP composites. Therefore, Fe3O4 nanoparticles enhanced the adsorption of arsenate and fluoride. The variations of alkaline catalyst and water content significantly affected the resulting properties of textural and surface chemistry of magnetic xerogel composites.  相似文献   

18.
《水科学与水工程》2021,14(4):295-303
A submerged membrane system was used in this work to investigate the effect of the polyaluminum chloride (PAC) coagulant on the antifouling performance of the polyvinyl chloride/alumina (PVC/Al2O3) nanocomposite membrane. The prepared nanocomposite membranes were characterized with field emission scanning electron microscopy (FE-SEM), atomic force microscopy, contact angle, porosity measurement, and pure water flux. The results revealed that the membrane containing Al2O3 nanoparticles (the mass ratio of PVC to Al2O3 was 98.5/1.5) had a higher hydrophilicity, porosity, and pure water flux than other membranes. The FE-SEM images showed that when Al2O3 nanoparticles were present in the PVC membrane, large pores and macrovoids formed on the surface and cross-section of the membrane. The fouling behavior of membranes was investigated through the filtration of humic acid (HA) solution with and without the PAC coagulant. Without PAC addition, the PVC/Al2O3 membrane significantly decreased the irreversible fouling ratio from 60.7% to 19.4% and showed a high HA removal efficiency of approximately 90.5%. The Hermia model confirmed that the cake formation mechanism best described the experimental data for the neat PVC and nanocomposite membranes with the presence and absence of the PAC coagulant. This confirms that the PAC coagulant can significantly mitigate fouling and improve HA removal in the submerged membrane system.  相似文献   

19.
A newly developed membrane performance enhancer (MPE) was used to prevent membrane fouling in a membrane bioreactor (MBR) process. It transpired that 1,000 mg/l of MPE reduced polysaccharide levels from 41 mg/I to 21 mg/I on average under the experimental condition. Repeated experiments also confirmed that 50-1,000 mg/l of MPE could reduce membrane fouling significantly and increase the intervals between membrane cleanings. Depending on MPE dosages and experimental conditions, trans-membrane pressure (TMP) increase was suppressed for 20-30 days, while baseline TMP surged within a few days. In addition, MPE allowed MBR operation even at 50,000 mg/l of total solid and reduced permeate COD. However, no evidence of toxicity for sludge was found from respiratory works.  相似文献   

20.
Activated sludge quality is one of the major factors influencing flux decline in membrane bioreactors (MBRS). Sludge filterability is a recognized parameter to characterize the physical properties of activated sludge. Decrease in filterability is linked to a higher number of submicron particles. In our present research we studied whether particle counting techniques can be used to indicate deflocculation of the sludge suspended fraction to submicron particles, causing the aforementioned filterability decrease. A total number of 105 activated sludge samples were collected in four full scale municipal MBRS. Samples were tested for filterability and particle counting in the range 2-100 microm. In 88% of the membrane tank samples the filterability varied between good and poor, characterized by the deltaR20, being 0 < deltaR20 < 1. Filterability varied following the season of the year, stability of the MBR operation and recirculation ratio. The membrane tank filterability can be improved by applying low recirculation ratio between MBR tanks. The applied particle counting methodology generated reproducible and reliable results in the range 10-100 microm. Results show that differences in filterability cannot be explained by variations in particle size distribution in the range 10-100 microm. However, measurable deflocculation might be masked by the large numbers of particles present. Therefore, we cannot exclude the suspended particles as a possible source of submicron particles that are subsequently responsible for MBR sludge filterability deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号