共查询到18条相似文献,搜索用时 78 毫秒
1.
基于多尺度的高分辨率遥感影像分类方法研究,可以为滨海湿地动态监测、规划保护提供更详尽的湿地分类信息和更快速的数据获取方法,对湿地保护具有重要意义。选取连云港青口河入海口处湿地为研究区,以高分辨率遥感影像WV\|Ⅱ和航空遥感影像为数据源,利用多尺度分割方法将影像分割成不同层次的实体对象;在不同层次,以实体对象为单元,结合光谱、形状、纹理等不同影像特征,进行滨海湿地分类研究,结果表明:利用该方法分类后,研究区各种湿地类型都达到较高精度。基于多尺度分割的影像分类方法能充分利用各种影像特征完成湿地分类,有效地减少了遥感影像中的“椒盐”现象,提高了分类精度;选择适宜的分割尺度和分割参数是基于多尺度分割的遥感影像分类方法提高精度的前提。 相似文献
2.
针对传统的遥感影像语义分割方法存在分类能力差和分割效果不精细的问题,设计并实现一种基于U-Net的多尺度特征融合网络.网络通过多尺度跳跃连接组合不同层级的语义特征;结合通道注意力机制增强跳跃连接中关键特征的表达能力;利用空洞空间金字塔池化结构融合深层特征,进一步加强网络在复杂背景中的分类性能.在公开数据集Vaihingen上进行的实验表明,多尺度特征融合网络相比通用分割网络具有更高的表现性能和更好的实用价值. 相似文献
3.
遥感影像语义分割在环境监测、土地覆盖分类和城市规划等领域发挥着至关重要的作用. 卷积神经网络及其改进模型是遥感影像语义分割的主流方法, 但此类方法更加关注局部上下文特征的学习, 无法有效建模不同物体之间的全局分布关系, 进而制约了模型的分割性能. 为了解决该问题, 本文在卷积神经网络的基础上, 构建了全局语义关系学习模块, 充分学习不同物体之间的共生关系, 有效地增强了模型的表征能力. 此外, 考虑到同一场景中, 待分割物体的尺度存在差异性, 构建了多尺度关系学习模块, 以融合不同尺度的全局语义关系. 为了评估模型的性能, 本文在Vaihingen和Potsdam两个常用的遥感影像数据集上进行了充分的实验. 实验结果表明, 本文方法能够获得比已有的基于卷积神经网络的模型更高的分割性能. 相似文献
4.
针对高分辨率遥感影像地物分布复杂多变,利用ELM的快速分类性能,提出了一种ELM的多特征多核高分辨率遥感影像分类方法。首先利用多尺度分割算法将原始影像粗分为若干地物区域;然后依据区域合并准则对粗分割图像合并得到典型地物特征的对象信息,并提取分割对象的光谱特征与空间特征;最后以多种核函数加权组合的方式构建多核ELM对影像分类,获得最终的分类结果。实验结果表明,所提方法不仅降低了对目标训练样本的要求,同时还提高了分类的准确性、及时性和完整性。 相似文献
5.
多尺度分割是高分辨率遥感信息计算的重要基础,是高分辨率遥感影像图谱认知中“图”提取的关键技术。当前提出的多尺度分割方法普遍存在着占用内存大,耗费计算资源、计算时间长的缺点,并且这些问题随着遥感数据量的增大、算法的改进等进一步加剧。针对这种情况,根据当前集群计算技术的发展,以均值漂移的多尺度分割方法为例,实现了一种基于集群计算环境的多尺度分割算法,集中解决任务分配和结果回收以及数据并行的方式,统计了算法所消耗的时间,对其的效率进行了分析,通过实验说明了集群化对提高多尺度分割效率的有效性。 相似文献
6.
针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合并过程中,基于对象间的异质性和对象内部的同质性,结合光谱、纹理和形状特征,对对象进行合并;通过调整全局分割参数来调整合并尺度,得到最终的影像分割结果。实验结果表明,所提方法能得到较好的影像分割效果。 相似文献
7.
8.
面向对象的遥感影像最优分割尺度评价 总被引:7,自引:0,他引:7
遥感影像分割决定了后续分类的精度,鉴于目前分割技术评价的研究缺乏且局限于主观判断的现状,以定量方法确定最优分割尺度。利用Definiens平台面向对象的分割算法,将组成对象的像素灰度值的标准差作为衡量对象内同质性的标准,用与邻域的平均差分的绝对值作为对象间的异质性度量变量,同时考虑面积权重的影响;根据上述3个评价指标,在考虑多光谱影像的基础上,构造了平均分割评价指数;基于该评价指数,以优度实验法对QuickBird多光谱影像进行了研究,并确定了不同地物类型的最优分割尺度。最后,利用平均对象匹配指数对评价结果进行了验证,并对评价方法的可行性进行了探讨。 相似文献
9.
为进一步提高高分辨率影像地物分类精度,以高分2号卫星影像为研究数据,根据高分2号卫星遥感影像光谱信息以及高空间分辨的结构特点,从遥感影像数据分割的尺寸效果及其各种地物显著特征着手,通过局部方差法寻求出各类地物的最优分割尺度,并建立尺度网络层,利用继承进行多尺寸下多特征的整体融合,在最优尺度层下根据光谱特征、形状特征对高分2号影像进行多特征融合与多尺度分割实验,并在此基础上进行了典型地物的分类对比研究。结果表明多特征融合多尺度分割能够较好利用高空谱信息提高地物分类精度。 相似文献
10.
目的 针对阴影在高分辨率遥感影像的特性,提出了一种多尺度分割和形态学运算相结合的阴影检测方法。方法 基于面向对象思想,首先利用均值漂移法实现影像分割生成对象,并以对象为基本单元分别进行形态学膨胀和腐蚀运算,从而获得面向对象的阴影指数;然后对影像进行多尺度分割,生成阴影指数矢量;最后对阴影指数矢量和亮度均值分别指定高低阈值,进而获得阴影检测结果。结果 选取高分二号和Google earth影像进行实验,采用误检率、漏检率和总错误率3个指标进行定量分析,并将实验结果与结合多特征法和形态学阴影指数法进行比较。在阴影检测定量精度分析中,相比于对比方法,本文方法的误检率偏高,但漏检率平均降低了7.31%;在建筑物阴影检测实验中,本文方法的漏检率同样下降了4.5个百分点;在多尺度效果融合分析中,本文方法在多组尺度组合下,各项精度指标均较理想;在阴影压盖地物实验中,3种方法的误检情况差异不大,但本文方法的漏检率得到较大改善,其下降程度平均达到了19.29%。结论 本文提出的阴影检测方法具备一定的抗干扰能力,适用性强,可靠性高。 相似文献
11.
一种基于区域分割的多尺度遥感图像融合方法 总被引:1,自引:0,他引:1
光谱保持和高分辨率保留是图像融合的重要问题,提出了一种区域分割和小波变换相结合的多尺度遥感图像融合方法。首先对经过配准的待融合图像进行小波变换,然后对变换后的低频系数进行基于区域标准差的分割,将低频系数分为目标信息和背景信息,接着对目标信息采取基于绝对值的融合,对背景信息采用基于灰度误差的融合。对小波变换后的高频系数采用基于清晰度的融合规则,最后进行小波逆变换得到融合图像。将该方法和几种常用融合方法进行对比分析,结果表明:该方法在有效地保持多光谱影像光谱信息的同时,可以有效地提高融合影像的空间细节信息,有利于后续进行信息提取和图像分类。 相似文献
12.
分水岭变换是一种适用于图像分割的强有力的形态工具,能够自动生成一系列封闭分割区域。分水岭变换的不足之处在于它的过分割结果。为了克服分水岭变换固有的过度分割现象,利用非线性滤波和改进的快速区域合并算法优化分水岭变换得出的初始分割结果,并针对高分辨遥感图像所体现出来的地物的多种信息特征,结合多种特征进行了区域合并。实验结果与MeanShift算法得到的结果进行了比较,证明该算法不仅能充分利用高分辨率遥感图像中地物的信息特征获得良好的分割效果,而且大大减少了计算时间。 相似文献
13.
以遥感影像认知和地学理解为主要分析视角,在图像多尺度分割的基础上,充分挖掘目标地物的光谱特征、形状特征、纹理特征和语义特征信息,明确对象的特征信息与地物之间的对应关系。在此基础上,合理选择目标地物的分类特征,建立分类规则,实现研究区地物的逐级分层分类。结果表明:所选特征能够很好地实现目标地物的信息提取,并具有明确的地学意义,便于理解。与传统的基于像素的最大似然法分类相比较,该方法分类精度有明显提高。 相似文献
14.
基于区域生长的多尺度遥感图像分割算法 总被引:7,自引:0,他引:7
图像分割是图像解译的关键一步,仅仅利用光谱信息的传统分割方法已不能有效地对高分辨遥感图像进行分割。鉴于高分辨率遥感图像提供了地物光谱、形状和纹理等大量信息,文章提出了一种基于区域生长结合多种特征的多尺度分割算法。首先利用图像梯度信息选取种子点;其次综合高分辨率遥感图像地物的局部光谱信息和全局形状信息作为区域生长的准则进行区域生长。迭代这两个过程,直到所有区域的平均面积大于设定的尺度面积参数则停止生长。该算法用VC实现,实验结果表明该算法能获得不同尺度下的分割结果且分割效率高、分割效果好。 相似文献
15.
Multi-scale segmentation is the premise and key step of Object-Based Image Analysis (OBIA). The quality of multi-scale segmentation directly affects the accuracy of object-oriented classification. However, scale selection and evaluation remains a challenge in multi-scale segmentation. According to the fact that the optimal segmentation scale of the remote sensing image is closely related to the complexity of the objects of the image, a top-down method to select the optimal scale based on the complexity of segmented objects is proposed. In the top-down segmentation process, image features of each segmented object are extracted to construct the complexity function, and the optimal scale of each object is determined by setting a threshold value and iterating calculation. Then, the segmentation results with the best scale are obtained and applied to the ZY-3 satellite multispectral image and the GF-2 fusion image to obtain segmentation and classification results. Qualitative visual evaluation method, unsupervised evaluation method and supervised classification evaluation method were used to compare them with results obtained by the optimal single-scale segmentation and the unsupervised evaluation method. The experimental results show that the method can accurately obtain the scale matching with the ground targets, and improve segmentation effect and the classification accuracy, it is of practical value. 相似文献
16.
针对多源多尺度影像配准中存在误匹配率较高和配准精度较低的问题,提出了一种基于(Scale-Invariant Feature Transform SIFT)与互信息筛选优化的影像配准算法。首先,采用SIFT算法进行特征点提取,通过快速最近邻逼近搜索(Fast Approximate Nearest Neighbors Search Library,FLANN)算法完成待配准影像的粗匹配,其次,在初始匹配点周围建立4×4邻域,计算匹配点之间的互信息值,对互信息值较小的匹配点进行剔除,寻求筛选优化后的最优变换矩阵,最后输出与基准影像互信息值最大的配准后影像作为最佳配准结果。实验结果表明:该方法与SIFT算法相比可以有效地剔除误匹配点并提高了配准精度。该方法可以应用于多源多尺度遥感影像配准,能够有效地提高配准精度。 相似文献
17.
针对基于像元光谱特征提取沙化土地信息分类精度偏低的问题,以Landsat\|5 TM为数据源,基于面向对象的方法对沙化土地遥感信息提取技术进行研究。首先采用多尺度分割法对影像进行分割以获得同质区域,然后结合野外调查数据制成不同地物类型的多种特征图,从而确定提取目标地物的特征并建立沙化和非沙化地物提取决策树,最后对影像进行模糊分类,并对分类结果进行精度评价。结果表明,基于面向对象提取沙化土地信息的总精度达84.89%,Kappa系数为0.8077。研究结果为后续深入研究奠定了基础。 相似文献
18.
Sankar K.Pal等最近提出了一种基于“粗糙熵”的图像分割算法,主要是按照目标和背景这两大类对图像进行分割,不足之处在于不能满足多类目标提取的需要。为此,基于商空间的粒度分解和粒度合成原理,综合粗糙集和聚类算法对之进行改进。通过对遥感图像进行分割处理,证明了改进后算法的有效性。 相似文献