首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound YNbO4 is a 3–5 analogue of ZrO2 with two polymorphs: low-temperature monoclinic and high-temperature tetragonal forms. YNbO4 powder with a surface area of 40 m2/g was prepared from citrate complexes. The powder sintered to theoretical density at 1550°C. Unlike pure ZrO2, YNbO4 can be cooled through the tetragonal-to-monoclinic phase transformation without cracking. The phase transformation is gradual and takes place by shear, resulting in twinning.  相似文献   

2.
Glasses of composition 3ZrO2O · 2SiO2 were prepared by the sol-gel process from metal alkoxides. Tetragonal ZrO2 was precipitated by appropriate heat treatment at 1000° to 1200°C. The fracture toughness of these glass-ceramics increased with increasing crystallite size of the tetragonal ZrO2, reaching ∼5.0 MN/m3/2 at a size of ∼40 nm. The higher fracture toughness was attributed to tetragonal → monoclinic ZrO2 transformation toughening.  相似文献   

3.
A ceramic consisting of a dispersion of ZrO2 particles (∼25%) in zircon was prepared by sintering partially leached plasma dissociated zircon. ZrO2 particles smaller than ∼150 nm were tetragonal inform; larger particles were monoclinic. The large increase in proportions of tetragonal ZrO2 after sintering may be ascribed partly to a reduction in particle size by reaction to form zircon, and partly to a matrix effect on the tetragonal to monoclinic transformation.  相似文献   

4.
The fracture toughness of fine-grained undoped ZrO2-toughened Al2O3 (ZTA) was essentially unchanged by postsintering hot isostatic pressing and increased monotonically with ZrO2 additions up to 25 wt%. The strength of ZTA with 5 to 15 wt% tetragonal ZrO2, which depended monotonically on the amount of ZrO2 present before hot isostatic pressing, was increased by pressing but became almost constant between 5 and 15 wt% ZrO2 addition. The strength appeared to be controlled by pores before pressing and by surface flaws after pressing; the size of flaws after pressing increased with ZrO2 content. The strength of ZTA containing mostly monoclinic ZrO2 (20 to 25 wt%) remained almost constant despite the noticeable density increase upon hot isostatic pressing because the strength was controlled by preexisting microcracks whose extent did not change on postsintering pressing. These strength-toughness relations in sintered and isostatically hot-pressed ZTA are explained on the basis of R -curve behavior. The importance of the contribution of microcracks to the toughness of ZTA is emphasized.  相似文献   

5.
Phase changes and the microstructure resulting from low-temperature annealing of yttria-doped tetragonal ZrO2 polycrystals in water were investigated at 65° to 120°C. Tetragonal ZrO2 on the surface of the sintered body transformed to the monoclinic phase, accompanied by microcracking. The transformation rate in water, which was much greater than that in air, was first order with respect to surface concentration of tetragonal ZrO2. Nonaqueous solvents with a molecular structure containing a lone-pair electron orbital opposite a proton donor site also greatly enhanced the transformation.  相似文献   

6.
Ultrafine-grained monoclinic ZrO2 polycrystals (MZP) and 3-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystals (3Y-TZP) were obtained by hot isostatic pressing (HIP). Both MZP and TZP were "high-purity" materials with impurities less than 0.1 wt%. The deformation behavior was studied at 1373 K, which was lower than the monoclinic ↔ tetragonal transition temperature. The stress exponent of 3Y-TZP with grain size of 63 nm was 3 in the higher stress region, and increased from 3 to 4 with decreasing stress. The deformation of MZP was characterized by a stress exponent of 2.5 over a wide stress range. The strain rate of 3Y-TZP was slower than that of MZP by 1 order of magnitude. It was suggested that either the doped yttrium or the difference in the crystal structure affected the diffusion coefficients of ZrO2.  相似文献   

7.
A mixture of tetragonal and monoclinic 2Y˙ZrO2 (2 mol% Y2O3–ZrO2) powder was treated from 400° to 800°C and from 4 to 7 GPa for 30 min. The products were identified by powder XRD, Raman spectroscopy, and TEM. Results indicated that an orthorhombic phase was synthesized at T=400° to 600°C and P>4 GPa. The lattice parameters were obtained as a=0.505, b=0.525, and c=0.509 nm; the density was 6.17 Mg/m3. The orthorhombic phase always coexisted with the tetragonal phase in the products. The amounts of the tetragonal phase before and after treatment remained largely unchanged, whereas the amount of new orthorhombic phase was nearly the same as the decreased amount of the monoclinic phase. It was assumed, therefore, that only the monoclinic phase transformed into the orthorhombic phase.  相似文献   

8.
The detrimental aging phenomenon observed in ZrO2-Y2O3 materials, which causes tetragonal ZrO2 to transform to its monoclinic structure at temperatures between 150 and 400°C, was investigated with respect to the gaseous aging environment and the Y2O3 and SiO2 content of the material. It is shown that the aging phenomenon is caused by water vapor and that inter-granular silicate glassy phases play no significant role. Transmission electron microscopy of thin foils, before and after aging, showed that the water vapor reacted with yttrium in the ZrO2 to produce clusters of small (20 to 50 nm) crystallites of α-Y(OH)3. It is hypothesized that this reaction produces a monoclinic nucleus (depleted of Y2O3) on the surface of an exposed tetragonal grain. Monoclinic nuclei greater than a critical size grow spontaneously to transform the tetragonal grain. If the transformed grain is greater than a critical size, it produces a microcrack which exposes subsurface tetragonal grains to the aging phenomenon and results in catastrophic degradation. Degradation can be avoided if the grain size is less than the critical size required for microcracking.  相似文献   

9.
Mixtures of ultrafine monoclinic zirconia and aluminum hydroxide were prepared by adding NH4OH to hydrolyzed zirconia sols containing varied amounts of aluminum sulfate. The mixtures were heat-treated at 500° to 1300°C. The relative stability of monoclinic and tetragonal ZrO2 in these ultrafine particles was studied by X-ray diffractometry. Growth of ZrO2 crystallites at elevated temperatures was strongly inhibited by Al2O3 derived from aluminum hydroxide. The monoclinic-to-tetragonal phase transformation temperature was lowered to ∼500°C in the mixture containing 10 vol% Al2O3, and the tetragonal phase was retained on cooling to room temperature. This behavior may be explained on the basis of Garvie's hypothesis that the surface free energy of tetragonal ZrO2 is lower than that of the monoclinic form. With increasing A12O3 content, however, the transformation temperature gradually increased, although the growth of ZrO2 particles was inhibited; this was found to be affected by water vapor formed from aluminum hydroxide on heating. The presence of atmospheric water vapor elevates the transformation temperature for ultrafine ZrO2. The reverse tetragonal-to-monoclinic transformation is promoted by water vapor at lower temperatures. Accordingly, it was concluded that the monoclinic phase in fine ZrO2 particles was stabilized by the presence of water vapor, which probably decreases the surface energy.  相似文献   

10.
Mullite and ZrO2-mullite ceramics have been prepared by tape casting mixtures of Al2O3, quartz, and ZrO2 powders and subsequent reaction sintering. Tape casting leads to homogeneous, high-density green materials with good sinterability. The design of a thermal cycle which favors densification with respect to mullitization allows the preparation of nearly dense, nearly fully reacted materials at sintering temperatures below 1600°C. ZrO2 additions limit grain growth, but the ZrO2 content must not be too high when a high tetragonal:monoclinic ratio is required.  相似文献   

11.
The fracture toughness of Al2O3 is considerably increased by the incorporation of fine monoclinic ZrO2 particles. Hot-pressed composites containing 15 vol % ZrO2 yield Klcvalues of ∼ 10 MN/m3/2, twice that of the A12O3 matrix. It is hypothesized that this increase results from a high density of small matrix microcracks absorbing energy by slow propagation. The microcracks are formed by the expansion of ZrO2during the tetragonal → monoclinic transformation. Since extremely high tensile stresses develop in the matrix, very small ZrO2 particles can act as crack formers, thus limiting the critical flaw size to small values.  相似文献   

12.
During fracture of ceramics containing tetragonal zirconia particles, a volume of zirconia material on either side of the crack irreversibly transforms to the monoclinic crystal structure. Transformation zone sizes, measured using Raman microprobe spectroscopy, are presented for three sintered ceramics. In a single-phase ZrO2−3.5 mol% Y2O3 material, an upper bound measurement of 5 μm is obtained for the zone size. In the Al2O3/ZrO2 composites studied, the zone size is deduced to correspond to ∼1 grain in diameter. On the basis of the monoclinic concentrations derived from the Raman spectra it is further concluded that only a fraction of the ZrO2 grains within the transformation zone transform, providing indirect evidence for the effect of particle size on the propensity for transformation.  相似文献   

13.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

14.
A ZrO2 coating was prepared on Hi-Nicalon fiber and single-crystal Si by chemical vapor deposition (CVD) using ZrCl4, CO2, and H2 as precursors at 1050°C. The effects of oxygen partial pressure on the nucleation behavior of the CVD-ZrO2 coating were systematically studied by intentionally varying the controlled amount of O2 into the CVD chamber. Characterization results suggested that the number density of tetragonal ZrO2 nuclei apparently decreased with increasing the oxygen partial pressure from 4 × 10−3 to 1.6 Pa. Also, the coating layer became more columnar and contained larger monoclinic ZrO2 grains. The observed relationships between the oxygen partial pressure and the nucleation and morphologic characteristics of the ZrO2 coating were attributed to the grain size and oxygen deficiency effects, which have been previously reported to cause the stabilization of the tetragonal ZrO2 phase in bulk ZrO2 specimens.  相似文献   

15.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

16.
Tetragonal zirconia doped with 3 mol% Er2O3 was prepared by the gel-precipitation wet-chemical method. The compaction response of ultrafine (∼8.5 nm), calcined, deagglomerated powders was studied. Initial sintering was studied using both isothermal and nonisothermal techniques, and an activation energy of 270 ± 40 kJ/mol was obtained; therefore, grain-boundary diffusion was probably the predominant mechanism in the sintering stage. The microstructural development in the high-temperature-aged, sintered samples and its effect on density and mechanical properties were also studied. A theoretically dense body of tetragonal zirconia solid solution of 3 mol% Er2O3–ZrO2, obtained from sintering below 1400°C, was translucent.  相似文献   

17.
The role of water vapor in crystallite growth and the tetragonal-to-monoclinic phase transformation of ZrO2 was studied using three specially prepared samples: an ultrafine powder of monoclinic ZrO2 obtained by hydrolysis of ZrOCI2, an aggregated powder of tetragonal ZrO2 obtained by thermal decomposition of Zr(OH)4 under reduced pressure, and an ultrafine powder of tetragonal ZrO2 obtained by thermal decomposition of zirconyl acetate dispersed in caramel. The samples were heat-treated up to 1000°C in dry and wet atmospheres saturated with water vapor at 90°C. It was found that water vapor markedly accelerated crystallite growth for both monoclinic and tetragonal ZrO2 and facilitated the tetragonal-to-monoclinic phase transformation. Water vapor increases surface diffusion and thus enhances crystallite growth and decreases surface energy, which leads to stabilization of the tetragonal phase.  相似文献   

18.
Crystallization of an MgO-Al2O3-SiO2-ZrO2 sintered glass frit was studied. Heat treatment at 850° or 900°C caused initial crystallization of μ-cordierite and tetragonal ( t ) ZrO2. The t -ZrO2 crystallized with an irregular dendritic morphology and could be transformed to monoclinic ( m ) symmetry under certain conditions; the cordierite underwent the μ→α a transformation with extended annealing. Heat treatments at 1000°C caused crystallization of t -ZrO2 rods and spheroids in an α-cordierite matrix; these ZrO2 crystals, however, are resistant to transformation to m -ZrO2. The beneficial effects of ZrO2 on the fracture toughness of cordierite-based glass-ceramics are described.  相似文献   

19.
Polycrystalline monoclinic ( m ), tetragonal ( t ), and cubic ( c ) ZrO2, sintered at 1500°C, were annealed in the cubic stability field and rapidly cooled to permit the displacive c → t ' transformation to occur in compositions containing 0–6 mol% Y2O3. The bulk fracture toughness of coarse-grained (> 25 μm) m , t ', and c zirconias were compared with conventionally sintered, fine-grained (typically less than 1 μm) materials. The ferroelastic monoclinic and tetragonal zirconias were more than twice as tough as paraelastic cubic zirconia.  相似文献   

20.
Phase Relations in the ZrO2-MgO System   总被引:1,自引:0,他引:1  
Phase relations were studied in the system ZrO2-MgO with emphasis on the range 1350° to 1600°C. A phase relation was determined from samples, using precision lattice parameters, X-ray diffraction line intensities, and petrographic observations, and from dynamic observations of the phases present using high-temperature X-ray diffraction techniques. Limits were established for the solubility of MgO in tetragonal ZrO2 and for the range of the cubic solid solution. The phase relations below 1240°C were complicated by hysteresis in the monoclinic to tetragonal inversion of ZrO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号