首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work deals with the problem of controlling the outlet temperature of a tubular heat exchanger system by means of flow pressure. The usual industrial case is to try to control the outlet temperature by either the temperature or the flow of the fluid, which flows through the shell tube. But, in some situations, this is not possible, due to the fact that the whole of system coefficients variation cannot quite be covered by control action. In this case, the system behavior must precisely be modeled and appropriate control action needs to be obtained based on novel techniques. A new multiple models control strategy using the well-known linear generalized predictive control (LGPC) scheme has been proposed, in this paper. The main idea of the proposed control strategy is to represent the operating environments of the system, which have a wide range of variation with respect to time by multiple explicit linear models. In this strategy, the best model of the system is accurately identified, at each instant of time, by an intelligent decision mechanism (IDM), which is organized based on both new recursive weight generator and fuzzy adaptive Kalman filter approaches. After that, the adaptive algorithm is implemented on the chosen model. Finally, for having a good tracking performance, the generalized predictive control is instantly updated and its control action is also applied to the system. For demonstrating the effectiveness of the proposed approach, simulations are all done and the results are also compared with those obtained using a nonlinear GPC (NLGPC) approach that is realized based on the Wiener model of the system. The results can verify the validity of the proposed control scheme.  相似文献   

2.
This paper describes an application of intelligence-based predictive scheme to load-frequency control (LFC) in a two-area interconnected power system. In this investigation, at first, a dynamic model of the present system has to be considered and subsequently an efficient control scheme which is organized based on Takagi-Sugeno-Kang (TSK) fuzzy-based scheme and linear generalized predictive control (LGPC) scheme needs to be developed. In the control scheme proposed, frequency deviation versus load electrical power variation could efficiently be dealt with, at each instant of time. In conclusion, in order to validate the effectiveness of the proposed control scheme, the whole of outcomes are simulated and compared with those obtained using a nonlinear GPC (NLGPC), as a benchmark approach, which is implemented based on the Wiener model of this power system. The validity of the proposed control scheme is tangibly verified in comparison with the previous one.  相似文献   

3.
There is growing realization that on-line model maintenance is the key to realizing long term benefits of a predictive control scheme. In this work, a novel intelligent nonlinear state estimation strategy is proposed, which keeps diagnosing the root cause(s) of the plant model mismatch by isolating the subset of active faults (abrupt changes in parameters/disturbances, biases in sensors/actuators, actuator/sensor failures) and auto-corrects the model on-line so as to accommodate the isolated faults/failures. To carry out the task of fault diagnosis in multivariate nonlinear time varying systems, we propose a nonlinear version of the generalized likelihood ratio (GLR) based fault diagnosis and identification (FDI) scheme (NL-GLR). An active fault tolerant NMPC (FTNMPC) scheme is developed that makes use of the fault/failure location and magnitude estimates generated by NL-GLR to correct the state estimator and prediction model used in NMPC formulation. This facilitates application of the fault tolerant scheme to nonlinear and time varying processes including batch and semi-batch processes. The advantages of the proposed intelligent state estimation and FTNMPC schemes are demonstrated by conducting simulation studies on a benchmark CSTR system, which exhibits input multiplicity and change in the sign of steady state gain, and a fed batch bioreactor, which exhibits strongly nonlinear dynamics. By simulating a regulatory control problem associated with an unstable nonlinear system given by Chen and Allgower [H. Chen, F. Allgower, A quasi infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica 34(10) (1998) 1205–1217], we also demonstrate that the proposed intelligent state estimation strategy can be used to maintain asymptotic closed loop stability in the face of abrupt changes in model parameters. Analysis of the simulation results reveals that the proposed approach provides a comprehensive method for treating both faults (biases/drifts in sensors/actuators/model parameters) and failures (sensor/ actuator failures) under the unified framework of fault tolerant nonlinear predictive control.  相似文献   

4.
A piecewise linear system consists of a set of linear time‐invariant (LTI) subsystems, with a switching sequence specifying an active subsystem at each time instant. This paper studies the adaptive control problem of single‐input, single‐output (SISO) piecewise linear systems. By employing the knowledge of the time instant indicator functions of system parameter switches, a new controller structure parametrization is proposed for the development of a stable adaptive control scheme with reduced modeling error in the estimation error signal used for parameter adaptive laws. This key feature is achieved by the new control scheme's ability to avoid a major parameter swapping term in the error model, with the help of indicator functions whose knowledge is available in many applications. A direct state feedback model reference adaptive control (MRAC) scheme is presented for such systems to achieve closed‐loop signal boundedness and small output tracking error in the mean square sense, under the usual slow system parameter switching condition. Simulation results on linearized NASA GTM models are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

5.
This article considers robust model predictive control (MPC) schemes for linear parameter varying (LPV) systems in which the time-varying parameter is assumed to be measured online and exploited for feedback. A closed-loop MPC with a parameter-dependent control law is proposed first. The parameter-dependent control law reduces conservativeness of the existing results with a static control law at the cost of higher computational burden. Furthermore, an MPC scheme with prediction horizon ‘1’ is proposed to deal with the case of asymmetric constraints. Both approaches guarantee recursive feasibility and closed-loop stability if the considered optimisation problem is feasible at the initial time instant.  相似文献   

6.
This paper describes a novel artificial intelligence based predictive control scheme for the purpose of dealing with so many complicated systems. In the control scheme proposed here, the system has to be first represented through a multi-Takagi-Sugeno-Kang (TSK) fuzzy-based model approach to make an appropriate prediction of the system behavior. Subsequently, a multi-generalized predictive control (GPC) scheme, which is organized based on a number of GPC schemes, is realized in line with the investigated model outcomes, at chosen operating points of the system. In case of the proposed control strategy realization, the investigated multi-GPC scheme is instantly updated to handle the system by activating the best control scheme through a new GPC identifier, while the system output is suddenly varied with respect to time. To present the applicability of the proposed control scheme, an industrial tubular heat exchanger system and also a drum-type boiler-turbine system have been chosen to drive through the proposed strategy. In such a case, the simulations are carried out and the corresponding results are compared with those obtained using traditional GPC scheme in addition to nonlinear GPC (NLGPC) scheme, as benchmark approaches, where the acquired results of the proposed control scheme are desirably verified.  相似文献   

7.
This paper describes a new robust model predictive control (MPC) scheme to control the discrete‐time linear parameter‐varying input‐output models subject to input and output constraints. Closed‐loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal set, which are solved offline, for the underlying online MPC optimization problem. The main attractive feature of the proposed scheme in comparison with previously published results is that all offline computations are now based on the convex optimization problem, which significantly reduces conservatism and computational complexity. Moreover, the proposed scheme can handle a wider class of linear parameter‐varying input‐output models than those considered by previous schemes without increasing the complexity. For an illustration, the predictive control of a continuously stirred tank reactor is provided with the proposed method.  相似文献   

8.
A neurofuzzy scheme has been designed to carry out on-line identification, with the aim of being used in an adaptive–predictive dynamic matrix control (DMC) of unconstrained nonlinear systems represented by a transfer function with varying parameters. This scheme supplies to the DMC controller the linear model and the nonlinear output predictions at each sample instant, and is composed of two blocks. The first one makes use of a fuzzy partition of the external variable universe of discourse, which smoothly commutes between several linear models. In the second block, a recurrent linear neuron with interpretable weights performs the identification of the models by means of supervised learning. The resulting identifier has several main advantages: interpretability, learning speed, and robustness against catastrophic forgetting. The proposed controller has been tested both on simulation and on a real laboratory plant, showing a good performance.  相似文献   

9.
吕红丽  贾磊  王雷  高瑞  CAI Wen-jia 《控制与决策》2006,21(12):1412-1416
针对暖通空调(HVAC)系统难以控制的问题,提出一种基于max-product推理的Mamdani模糊模型预测控制策略.首先利用一步模糊预测模型的结构分析得到其解析表达式,获得系统在k+1时刻的线性化预测模型;然后基于模糊线性化模型进行模型预测控制器设计.对HVAC系统的仿真和实验结果表明,该算法是一种跟踪性能好且鲁棒性强的有效控制算法.  相似文献   

10.
This paper investigates the problem of model predictive control for a class of networked control systems. Both sensor‐to‐controller and controller‐to‐actuator delays are considered and described by Markovian chains. The resulting closed‐loop systems are written as jump linear systems with two modes. The control scheme is characterized as a constrained delay‐dependent optimization problem of the worst‐case quadratic cost over an infinite horizon at each sampling instant. A linear matrix inequality approach for the controller synthesis is developed. It is shown that the proposed state feedback model predictive controller guarantees the stochastic stability of the closed‐loop system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
针对一类主从式异构线性网络化多智能体系统,考虑每个智能体的反馈通道和前向通道中存在随机网络诱导时延和数据包丢失问题,采用预测控制方法,提出一种基于观测器的网络化多智能体协同输出跟踪控制方案.在该方案中,主智能体在每一时刻基于自身滞后输出和系统参考信号,计算一组控制预测序列和输出预测序列,前者用以主动补偿主智能体控制回路中的随机网络诱导时延和数据包丢失,后者被发往从智能体;从智能体在每一时刻基于主智能体发送过来的输出预测序列和自身滞后输出,计算一组控制预测序列,用以主动补偿从智能体控制回路中的随机网络诱导时延和数据包丢失;随后推导闭环网络化多智能体控制系统的稳定性,并通过实验验证该方案的有效性和可行性.  相似文献   

12.
Recurrent neuro-fuzzy networks for nonlinear process modeling   总被引:14,自引:0,他引:14  
A type of recurrent neuro-fuzzy network is proposed in this paper to build long-term prediction models for nonlinear processes. The process operation is partitioned into several fuzzy operating regions. Within each region, a local linear model is used to model the process. The global model output is obtained through the centre of gravity defuzzification which is essentially the interpolation of local model outputs. This modeling strategy utilizes both process knowledge and process input/output data. Process knowledge is used to initially divide the process operation into several fuzzy operating regions and to set up the initial fuzzification layer weights. Process I/O data are used to train the network. Network weights are such trained so that the long-term prediction errors are minimized. Through training, membership functions of fuzzy operating regions are refined and local models are learnt. Based on the recurrent neuro-fuzzy network model, a novel type of nonlinear model-based long range predictive controller can be developed and it consists of several local linear model-based predictive controllers. Local controllers are constructed based on the corresponding local linear models and their outputs are combined to form a global control action by using their membership functions. This control strategy has the advantage that control actions can be calculated analytically avoiding the time consuming nonlinear programming procedures required in conventional nonlinear model-based predictive control. The techniques have been successfully applied to the modeling and control of a neutralization process.  相似文献   

13.
对存在输入饱和约束和输入可逆静态非线性的系统,采用两步法广义预测控制策略. 首先用线性广义预测控制策略得到中间变量,代表期望的控制作用,然后用解方程方法补偿可逆 静态非线性并用解饱和方法满足饱和约束,得到实际的控制作用.两步法计算简单,特别适用于 快速控制的场合.将该控制系统闭环结构转化为静态非线性增益反馈结构,利用Popov定理分 析了该系统的闭环稳定性,得到了稳定的充分条件,并具体给出了有效的控制器参数确定算法使 得稳定性结论具备实用的价值.给出了算例验证了稳定条件.  相似文献   

14.
Given a state space model together with the state noise and measurement noise characteristics, there are well established procedures to design a Kalman filter based model predictive control (MPC) and fault diagnosis scheme. In practice, however, such disturbance models relating the true root cause of the unmeasured disturbances with the states/outputs are difficult to develop. To alleviate this difficulty, we reformulate the MPC scheme proposed by K.R. Muske and J.B. Rawlings [Model predictive control with linear models, AIChE J. 39 (1993) 262–287] and the fault tolerant control scheme (FTCS) proposed by J. Prakash, S.C. Patwardhan, and S. Narasimhan [A supervisory approach to fault tolerant control of linear multivariable systems, Ind. Eng. Chem. Res. 41 (2002) 2270–2281] starting from the innovations form of state space model identified using generalized orthonormal basis function (GOBF) parameterization. The efficacy of the proposed MPC scheme and the on-line FTCS is demonstrated by conducting simulation studies on the benchmark shell control problem (SCP) and experimental studies on a laboratory scale continuous stirred tank heater (CSTH) system. The analysis of the simulation and experimental results reveals that the MPC scheme formulated using the identified observers produces superior regulatory performance when compared to the regulatory performance of conventional MPC controller even in the presence of significant plant model mismatch. The FTCS reformulated using the innovations form of state space model is able to isolate sensor as well as actuator faults occurring sequentially in time. In particular, the proposed FTCS is able to eliminate offset between the true value of the measured variable and the setpoint in the presence of sensor biases. Thus, the simulation and experimental study clearly demonstrate the advantages of formulating MPC and generalized likelihood ratio (GLR) based fault diagnosis schemes using the innovations form of state space model identified from input output data.  相似文献   

15.
A recurrent neuro-fuzzy network-based nonlinear long range model predictive control strategy is proposed in this paper. The process operation is partitioned into several fuzzy operating regions. Within each region, a local linear model is used to model the process. The global model output is obtained through the centre of gravity defuzzification. Based upon a neuro-fuzzy network model, a nonlinear model-based predictive controller can be developed by combining several local linear model-based predictive controllers which usually have analytical solutions. This strategy avoids the time consuming numerical optimisation procedure, and the uncertainty in convergence to the global optimum which are typically seen in conventional nonlinear model-based predictive control strategies. Furthermore, control actions obtained based on local incremental models contain integration actions which can nat-urally eliminate static control offsets. The technique is demonstrated by an application to the modelling and control of liquid level in a water tank.  相似文献   

16.
针对受限移动机器人视觉伺服系统,提出一种移动机器人视觉伺服镇定准最小最大模型预测控制策略. 基于移动机器人视觉伺服镇定误差模型,建立移动机器人视觉伺服线性参数时变预测模型,进而引入准最小最大策略,设计移动机器人视觉伺服镇定模型预测控制器.与传统视觉伺服预测控制器相比,所提控制器只需求解线性矩阵不等式表示的凸优化问题,降低了视觉伺服预测控制器的计算耗时,同时保证了闭环视觉伺服系统的渐近稳定性.仿真结果验证了所提出策略的有效性和在计算效率上的优越性.  相似文献   

17.
Ratio control for two interacting processes is proposed with a PID feedforward design based on model predictive control (MPC) scheme. At each sampling instant, the MPC control action minimizes a state-dependent performance index associated with a PID-type state vector, thus yielding a PID-type control structure. Compared to the standard MPC formulations with separated single-variable control, such a control action allows one to take into account the non-uniformity of the two process outputs. After reformulating the MPC control law as a PID control law, we provide conditions for prediction horizon and weighting matrices so that the closed-loop control is asymptotically stable, and show the effectiveness of the approach with simulation and experiment results.  相似文献   

18.
Like feedback strategy, coding scheme is an important part of networked control system design as well. On the basis of spherical polar coordinate, a novel coding scheme is proposed for stabilization problem of discrete linear time invariant system subject to packet erasure channel with feedback. The coding scheme uses encoder without access to control inputs. In the case that a decoder does not use control inputs, a definite relation between the quantized data and the corresponding quantization error is established, which helps to analyze the stability of system, and a selective quantization method is adopted, by which finite data rate is obtained. In the case that a decoder uses control inputs, instead of quantizing the system state at each time step as usual, the encoder quantizes the initial state all the time by updating quantizer. Sufficient conditions guaranteeing the system stable are presented for two cases, respectively, and the corresponding design methods for coding schemes are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes stochastic model predictive control as a tool for hedging derivative contracts (such as plain vanilla and exotic options) in the presence of transaction costs. The methodology combines stochastic scenario generation for the prediction of asset prices at the next rebalancing interval with the minimization of a stochastic measure of the predicted hedging error. We consider 3 different measures to minimize in order to optimally rebalance the replicating portfolio: a trade‐off between variance and expected value of hedging error, conditional value at risk, and the largest predicted hedging error. The resulting optimization problems require solving at each trading instant a quadratic program, a linear program, and a (smaller‐scale) linear program, respectively. These can be combined with 3 different scenario generation schemes: the lognormal stock model with parameters recursively identified from data, an identification method based on support vector regression, and a simpler scheme based on perturbation noise. The hedging performance obtained by the proposed stochastic model predictive control strategies is illustrated on real‐world data drawn from the NASDAQ‐100 composite, evaluated for a European call and a barrier option, and compared with delta hedging.  相似文献   

20.
Nowadays, most of the mathematical models used in predictive microbiology are deterministic, i.e. their model output is only one single value for the microbial load at a certain time instant. For more advanced exploitation of predictive microbiology in the context of hazard analysis and critical control points (HACCP) and risk analysis studies, stochastic models should be developed. Such models predict a probability mass function for the microbial load at a certain time instant. An excellent method to deal with stochastic variables is Monte Carlo analysis. In this research, the sensitivity of microbial growth model parameter distributions with respect to data quality and quantity is investigated using Monte Carlo analysis. The proposed approach is illustrated with experimental growth data. There appears to be a linear relation between data quality (expressed by means of the standard deviation of the normal distribution assumed on experimental data) and model parameter uncertainty (expressed by means of the standard deviation of the model parameter distribution). The quantity of data (expressed by means of the number of experimental data points) as well as the positioning of these data in time have a substantial influence on model parameter uncertainty. This has implications for optimal experiment design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号