首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This paper addresses the problems of fault estimation and fault-tolerant control for a class of switched stochastic systems with sensor and actuator faults. A reduced-order fault estimation observer is designed to estimate the system states, actuator and sensor faults, simultaneously. In the observer design process, intermediate variables are introduced such that the differential information of the measurement output is not included in the designed observer. Compared with the existing results, the dimension of the proposed observer is reduced, and the sensor fault can be completely unknown and unbounded. An observer based fault-tolerant controller is designed to stabilize the switched stochastic systems. Under arbitrary switching signal, the designed observer and controller can ensure that both the estimation error system and the closed-loop system are mean-square exponentially stable with disturbance attenuation performance. At last, both a numerical example and a switched electrical circuit example verify the proposed method.  相似文献   

2.
This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

3.
4.
5.
This paper addresses the problems of fault estimation (FE) and fault tolerant control (FTC) for fuzzy systems with local nonlinear models, external disturbances, sensor and actuator faults, simultaneously. Disturbance observer (DO) and FE observer are designed, simultaneously. Compared with the existing results, the proposed observer is with a wider application range. Using the estimation information, a novel fuzzy dynamic output feedback fault tolerant controller (DOFFTC) is designed. The controller can be used for the fuzzy systems with unmeasurable local nonlinear models, mismatched input disturbances, and measurement output affecting by sensor faults and disturbances. At last, the simulation shows the effectiveness of the proposed methods.  相似文献   

6.
针对传感器及执行器故障对EPS助力性能的影响,提出一种EPS主动容错控制方法。建立含参数不确定性、传感器与执行器故障的EPS系统模型,将系统不确定性转化为故障估计误差系统的扰动,基于未知输入观测器及线性矩阵不等式推导故障估计误差系统稳定并对扰动具有鲁棒性的充分条件,采用LMI区域极点配置法提升故障估计性能;在此基础上,针对执行器故障设计控制律补偿容错控制算法,针对传感器故障设计信号重构容错控制算法。Matlab/Simulink环境下的仿真结果表明,当传感器与执行器单独或同时发生故障时,设计的故障估计算法均可较为准确地估计故障幅值,故障估计的误差较小;针对不同故障对助力性能的影响,提出的容错控制方法均可使故障EPS系统的助力性能有所恢复。基于LabVIEW PXI的硬件在环试验进一步验证容错控制应用于EPS系统的有效性,提升汽车转向行驶的安全性及可靠性。  相似文献   

7.
为解决系统模型误差、外部干扰以及执行器故障引起的双星编队轨道控制精度低、稳定性差问题,设计一种基于观测器的抗干扰容错线性二次型调节器(LQR)控制策略.首先,根据编队双星相对运动动力学模型,设计基于双比例积分自适应律的增广观测器,同时实现对系统状态、间歇故障与快速时变故障、可建模干扰的快速精确估计,并采用H∞优化技术抑...  相似文献   

8.
In this paper, the problem of fault-tolerant control (FTC) for spacecraft attitude stabilization system with actuator fault and mismatched disturbance is investigated. A novel fault tolerant control strategy based on adaptive fast terminal sliding mode control (AFTSMC) is proposed. Firstly, a novel composite observer is proposed to estimate the disturbance, actuator efficiency factor and partial states of the system. By introducing a sliding mode observer, the bias actuator fault is reconstructed. Subsequently, in accordance with the estimated information, a novel sliding mode fault tolerant controller is designed. The proposed control scheme contains two compensators and two adaptive parameters to attenuate the mismatched disturbance, to compensate actuator fault, and to guarantee fast convergence of the system. Furthermore, the reachability of sliding motion is proved. The simulation results for the spacecraft system illustrate the effectiveness of the proposed method.  相似文献   

9.
A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
一类非线性系统的执行器偏差故障检测与诊断   总被引:2,自引:0,他引:2  
夏扬  曹松银  于启红  邱宏 《仪器仪表学报》2006,27(11):1423-1426
针对一类具有系统建模误差以及含传感器模型不确定项的非线性控制系统,本文提出了一种用于执行器故障检测与诊断的观测器方法。观测器中引入了自适应补偿项,当出现偏差后将对故障及建模不确定项进行补偿。自适应算法中采用了死区算子,增强了算法的鲁棒性。利用自适应阈值进行故障检测,同时利用自适应律进行偏差估计。仿真结果表明了该方法的有效性。  相似文献   

11.
For intermittent actuator faults of large-scale system, a cooperative distributed fault-tolerant model predictive control (DFTMPC) is presented. The actuator plug and play strategy is adopted in the interconnected systems with physical coupling making fault estimation and controller redesign unnecessary. The actuator plug and play process is modeled as a distributed switching model, and there a theoretical stability analysis is provided with switching form of model predictive control (MPC) cost functions. The novel cooperative distributed fault-tolerant performance index is raised in a global view for distributed model predictive control. A simulation example is taken to show the e?ectiveness of the proposed method.  相似文献   

12.
In this paper, a robust-optimal control approach is proposed to treat the active vibration control (or active vibration suppression) problem of flexible mechanical systems under mode truncation, linear time-varying parameter uncertainties in both the controlled and residual parts, feedback gain perturbations, estimator gain perturbations and partial actuator failures. A sufficient condition is proposed to ensure that the flexible mechanical systems with time-varying structured parameter uncertainties are asymptotically stable against partial actuator failures. Systems which have such a property of keeping stable under partial actuator failures are said to possess integrity, and this is an inherent property of MIMO systems. Based on the robust stability constraint and the minimization of a defined H2 performance, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the optimal state feedback controller and observer design problem of uncertain flexible mechanical systems. A design example of a flexible rotor system is given to demonstrate the applicability of the proposed approach. It is shown that the proposed approach can obtain satisfactory results.  相似文献   

13.
14.
15.
16.
In this paper, a new Fault Detection (FD) scheme based on combination of switching observer and Bond Graph (BG) method for linear continuous time switched systems with Average Dwell Time (ADT) approach is proposed. The proposed scheme is a BG-based two-stage FD system in which the compact state space representation and Global Analytical Redundancy Relations (GARRs) are derived based on the BG model. In the first stage, a switched observer is designed considering disturbance attenuation level, fault sensitivity and rapid fault detection criteria by solving a weighted Linear Matrix Inequality (LMI) optimization problem. Next, a new form of GARRs which is based on output estimation error of the observer and is called Error-based Global Analytical Redundancy Relations (EGARRs) is developed to combine the observer and BG method. The output estimation errors from the observer, which are adequately sensitive to faults and simultaneously the effects of disturbances are attenuated therein, are given to the EGARRs to generate the residuals of the FD system. The proposed method may be used for fault detection of switched linear systems with ADT based on the BG model of the system. Finally, two case studies including a two-tank system and a buck converter-driven DC motor are considered to show the efficiency and real-time implementation of the proposed method.  相似文献   

17.
In this paper, positioning control of a rodless cylinder in pneumatic servo systems with actuator saturation is investigated via an active disturbance rejection control. A linear extended state observer is designed to estimate and compensate strong friction force and other nonlinearities in the pneumatic rodless cylinder system. An actuator saturation linear feedback control law is developed to further improve the control performance. Furthermore, a linear matrix inequality-based optimization algorithm is employed to estimate a strictly invariance set for the closed-loop system. Experiment results with response time 0.5 s and accuracy 0.005 mm for a 200 mm step signal demonstrate the effectiveness of the proposed control strategy.  相似文献   

18.
In this paper, we propose an approach for achieving detection and identification of faults, and provide fault tolerant control for systems that are modeled using timed hybrid Petri nets. For this purpose, an observer based technique is adopted which is useful in detection of faults, such as sensor faults, actuator faults, signal conditioning faults, etc. The concepts of estimation, reachability and diagnosability have been considered for analyzing faulty behaviors, and based on the detected faults, different schemes are proposed for achieving fault tolerant control using optimization techniques. These concepts are applied to a typical three tank system and numerical results are obtained.  相似文献   

19.
20.
A matrix inequality approach is proposed to reliably stabilize a class of uncertain linear systems subject to actuator faults, saturation, and bounded system disturbances. The system states are assumed immeasurable, and a classical observer is incorporated for observation to enable state-based feedback control. Both the stability and stabilization of the closed-loop system are discussed and the closed-loop domain of attraction is estimated by an ellipsoidal invariant set. The resultant stabilization conditions in the form of matrix inequalities enable simultaneous optimization of both the observer gain and the feedback controller gain, which is realized by converting the non-convex optimization problem to an unconstrained nonlinear programming problem. The effectiveness of proposed design techniques is demonstrated through a linearized model of F-18 HARV around an operating point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号