首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most traffic crashes in Chinese cities occur at signalized intersections. Research on the intersection safety problem in China is still in its early stage. The recent development of an advanced traffic information system in Shanghai enables in-depth intersection safety analyses using road design, traffic operation, and crash data. In Shanghai, the road network density is relatively high and the distance between signalized intersections is small, averaging about 200 m. Adjacent signalized intersections located along the same corridor share similar traffic flows, and signals are usually coordinated. Therefore, when studying intersection safety in Shanghai, it is essential to account for intersection correlations within corridors. In this study, data for 195 signalized intersections along 22 corridors in the urban areas of Shanghai were collected. Mean speeds and speed variances of corridors were acquired from taxis equipped with Global Positioning Systems (GPS). Bayesian hierarchical models were applied to identify crash risk factors at both the intersection and the corridor levels. Results showed that intersections along corridors with lower mean speeds were associated with fewer crashes than those with higher speeds, and those intersections along two-way roads, under elevated roads, and in close proximity to each other, tended to have higher crash frequencies.  相似文献   

2.
Multilevel data and Bayesian analysis in traffic safety   总被引:1,自引:0,他引:1  

Background

Traditional crash prediction models, such as generalized linear regression model, are incapable of taking into account multilevel data structure. Therefore they suffer from a common underlying limitation that each observation (e.g. a crash or a vehicle involvement) in the estimation procedure corresponds to an individual situation in which the residuals exhibit independence.

Problem

However, this “independence” assumption may often not hold true since multilevel data structures exist extensively because of the traffic data collection and clustering process. Disregarding the possible within-group correlations may lead to production of models with unreliable parameter estimates and statistical inferences.

Proposed theory

In this paper, a 5 × ST-level hierarchy is proposed to represent the general framework of multilevel data structures in traffic safety, i.e. [Geographic region level − Traffic site level − Traffic crash level − Driver-vehicle unit level − Occupant level] × Spatiotemporal level. The involvement and emphasis for different sub-groups of these levels depend on different research purposes and also rely on the heterogeneity examination on crash data employed. To properly accommodate the potential cross-group heterogeneity and spatiotemporal correlation due to the multilevel data structure, a Bayesian hierarchical approach that explicitly specifies multilevel structure and reliably yields parameter estimates is introduced and recommended.

Case studies

Using Bayesian hierarchical models, the results from several case studies are highlighted to show the improvements on model fitting and predictive performance over traditional models by appropriately accounting for the multilevel data structure.  相似文献   

3.
The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors’ effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made.  相似文献   

4.
While rural freeways generally have lower crash rates, interactions between driver behavior, traffic and geometric characteristics, and adverse weather conditions may increase the crash risk along some freeway sections. This paper examines the safety effects of roadway geometrics on crash occurrence along a freeway section that features mountainous terrain and adverse weather. Starting from preliminary exploration using Poisson models, Bayesian hierarchical models with spatial and random effects were developed to efficiently model the crash frequencies on road segments on the 20-mile freeway section of study. Crash data for 6 years (2000–2005), roadway geometry, traffic characteristics and weather information in addition to the effect of steep slopes and adverse weather of snow and dry seasons, were used in the investigation. Estimation of the model coefficients indicates that roadway geometry is significantly associated with crash risk; segments with steep downgrades were found to drastically increase the crash risk. Moreover, this crash risk could be significantly increased during snow season compared to dry season as a confounding effect between grades and pavement condition. Moreover, sites with higher degree of curvature, wider medians and an increase of the number of lanes appear to be associated with lower crash rate. Finally, a Bayesian ranking technique was implemented to rank the hazard levels of the roadway segments; the results confirmed that segments with steep downgrades are more crash prone along the study section.  相似文献   

5.
To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained.  相似文献   

6.
This paper presents a fully Bayesian multivariate approach to before-after safety evaluation. Although empirical Bayes (EB) methods have been widely accepted as statistically defensible safety evaluation tools in observational before-after studies for more than a decade, EB has some limitations such that it requires a development and calibration of reliable safety performance functions (SPFs) and the uncertainty in the EB safety effectiveness estimates may be underestimated when a fairly large reference group is not available. This is because uncertainty (standard errors) of the estimated regression coefficients and dispersion parameter in SPFs is not reflected in the final safety effectiveness estimate of EB.Fully Bayesian (FB) methodologies in safety evaluation are emerging as the state-of-the-art methods that have a potential to overcome the limitations of EB in that uncertainty in regression parameters in the FB approach is propagated throughout the model and carries through to the final safety effectiveness estimate. Nonetheless, there have not yet been many applications of fully Bayesian methods in before-after studies. Part of reasons is the lack of documentation for a step-by-step FB implementation procedure for practitioners as well as an increased complexity in computation. As opposed to the EB methods of which steps are well-documented in the literature for practitioners, the steps for implementing before-after FB evaluations have not yet been clearly established, especially in more general settings such as a before-after study with a comparison group/comparison groups. The objectives of this paper are two-fold: (1) to develop a fully Bayesian multivariate approach jointly modeling crash counts of different types or severity levels for a before-after evaluation with a comparison group/comparison groups and (2) to establish a step-by-step procedure for implementing the FB methods for a before-after evaluation with a comparison group/comparison groups.The fully Bayesian multivariate approach introduced in this paper has additional advantages over the corresponding univariate approaches (whether classical or Bayesian) in that the multivariate approach can recover the underlying correlation structure of the multivariate crash counts and can also lead to a more precise safety effectiveness estimate by taking into account correlations among different crash severities or types for estimation of the expected number of crashes. The new method is illustrated with the multivariate crash count data obtained from expressways in Korea for 13 years to assess the safety effectiveness of decreasing the posted speed limit.  相似文献   

7.
Various road safety performance indicators (SPIs) have been proposed for different road safety research areas, mainly as regards driver behaviour (e.g. seat belt use, alcohol, drugs, etc.) and vehicles (e.g. passive safety); however, no SPIs for the road network and design have been developed. The objective of this research is the development of an SPI for the road network, to be used as a benchmark for cross-region comparisons. The developed SPI essentially makes a comparison of the existing road network to the theoretically required one, defined as one which meets some minimum requirements with respect to road safety. This paper presents a theoretical concept for the determination of this SPI as well as a translation of this theory into a practical method. Also, the method is applied in a number of pilot countries namely the Netherlands, Portugal, Greece and Israel. The results show that the SPI could be efficiently calculated in all countries, despite some differences in the data sources. In general, the calculated overall SPI scores were realistic and ranged from 81 to 94%, with the exception of Greece where the SPI was relatively lower (67%). However, the SPI should be considered as a first attempt to determine the safety level of the road network. The proposed method has some limitations and could be further improved. The paper presents directions for further research to further develop the SPI.  相似文献   

8.
A Bayesian hierarchical model for accident and injury surveillance   总被引:1,自引:0,他引:1  
This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time) of the injury counts, rates and ratios. During the 10-year period, high injury risk ratios evolved from northwest to central-interior and the southeast [corrected].  相似文献   

9.
Investigation of road network features and safety performance   总被引:1,自引:0,他引:1  
The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models’ results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety.  相似文献   

10.
Full Bayesian (FB) before–after evaluation is a newer approach than the empirical Bayesian (EB) evaluation in traffic safety research. While a number of earlier studies have conducted univariate and multivariate FB before–after safety evaluations and compared the results with the EB method, often contradictory conclusions have been drawn. To this end, the objectives of the current study were to (i) perform a before–after safety evaluation using both the univariate and multivariate FB methods in order to enhance our understanding of these methodologies, (ii) perform the EB evaluation and compare the results with those of the FB methods and (iii) apply the FB and EB methods to evaluate the safety effects of reducing the urban residential posted speed limit (PSL) for policy recommendation. In addition to three years of crash data for both the before and after periods, traffic volume, road geometry and other relevant data for both the treated and reference sites were collected and used. According to the model goodness-of-fit criteria, the current study found that the multivariate FB model for crash severities outperformed the univariate FB models. Moreover, in terms of statistical significance of the safety effects, the EB and FB methods led to opposite conclusions when the safety effects were relatively small with high standard deviation. Therefore, caution should be taken in drawing conclusions from the EB method. Based on the FB method, the PSL reduction was found effective in reducing crashes of all severities and thus is recommended for improving safety on urban residential collector roads.  相似文献   

11.
12.
This study proposes a Bayesian spatial joint model of crash prediction including both road segments and intersections located in an urban road network, through which the spatial correlations between heterogeneous types of entities could be considered. A road network in Hillsborough, Florida, with crash, road, and traffic characteristics data for a three-year period was selected in order to compare the proposed joint model with three site-level crash prediction models, that is, the Poisson, negative binomial (NB), and conditional autoregressive (CAR) models. According to the results, the CAR and Joint models outperform the Poisson and NB models in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-entity spatial correlations. Although the goodness-of-fit and predictive performance of the CAR and Joint models are equivalent in this case study, spatial correlations between segments and the connected intersections are found to be more significant than those solely between segments or between intersections, which supports the employment of the Joint model as an alternative in road-network-level safety modeling.  相似文献   

13.
A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.  相似文献   

14.
In this paper we discuss the potentials of a new Bayesian inference tool, called the Gibbs sampler, for the analysis of the censored regression or Tobit model. Tobit models have a wide range of applications in empirical sciences, like econometrics and biometrics. The estimation results of the simple Tobit model will be compared to a hierarchical Tobit model, and the Gibbs sampling approach to the related classical algorithm of expectation-maximisation (EM). The underlying botanical example of this paper is concerned with the censoring mechanism in plant reproduction and proposes the Bayesian Tobit model for the growth relationship between the reproductive part and the rest of the plant.  相似文献   

15.
In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.  相似文献   

16.
Currently, comparison between countries in terms of their road safety performance is widely conducted in order to better understand one's own safety situation and to learn from those best-performing countries by indicating practical targets and formulating action programmes. In this respect, crash data such as the number of road fatalities and casualties are mostly investigated. However, the absolute numbers are not directly comparable between countries. Therefore, the concept of risk, which is defined as the ratio of road safety outcomes and some measure of exposure (e.g., the population size, the number of registered vehicles, or distance travelled), is often used in the context of benchmarking. Nevertheless, these risk indicators are not consistent in most cases. In other words, countries may have different evaluation results or ranking positions using different exposure information. In this study, data envelopment analysis (DEA) as a performance measurement technique is investigated to provide an overall perspective on a country's road safety situation, and further assess whether the road safety outcomes registered in a country correspond to the numbers that can be expected based on the level of exposure. In doing so, three model extensions are considered, which are the DEA based road safety model (DEA-RS), the cross-efficiency method, and the categorical DEA model. Using the measures of exposure to risk as the model's input and the number of road fatalities as output, an overall road safety efficiency score is computed for the 27 European Union (EU) countries based on the DEA-RS model, and the ranking of countries in accordance with their cross-efficiency scores is evaluated. Furthermore, after applying clustering analysis to group countries with inherent similarity in their practices, the categorical DEA-RS model is adopted to identify best-performing and underperforming countries in each cluster, as well as the reference sets or benchmarks for those underperforming ones. More importantly, the extent to which each reference set could be learned from is specified, and practical yet challenging targets are given for each underperforming country, which enables policymakers to recognize the gap with those best-performing countries and further develop their own road safety policy.  相似文献   

17.
Highway traffic accidents all over the world result in more than 1.3 million fatalities annually. An alarming number of these fatalities occurs in developing countries. There are many risk factors that are associated with frequent accidents, heavy loss of lives, and property damage in developing countries. Unfortunately, poor record keeping practices are very difficult obstacle to overcome in striving to obtain a near accurate casualty and safety data. In light of the fact that there are numerous accident causes, any attempts to curb the escalating death and injury rates in developing countries must include the identification of the primary accident causes.This paper, therefore, seeks to show that the Delphi Technique is a suitable alternative method that can be exploited in generating highway traffic accident data through which the major accident causes can be identified. In order to authenticate the technique used, Korea, a country that underwent similar problems when it was in its early stages of development in addition to the availability of excellent highway safety records in its database, is chosen and utilized for this purpose. Validation of the methodology confirms the technique is suitable for application in developing countries. Furthermore, the Delphi Technique, in combination with the Bayesian Network Model, is utilized in modeling highway traffic accidents and forecasting accident rates in the countries of research.  相似文献   

18.
对组合服务信任度评估问题进行了研究。基于信任的不确定性和模糊性,给出了信任度的离散化表示方法;借助于贝叶斯网络的强大的推理能力,给出了组合服务的贝叶斯网络模型以及组合服务模型到贝叶斯网络的转换规则,利用贝叶斯网络的正向推理机制设计了基于贝叶斯网络模型的组合服务信任度评估方法。通过一个组合服务的买例,说明了组合服务的贝叶斯网络模型及其基于贝叶斯网络的组合服务信任度评估方法的使用方法。该评估方法基于信任的模糊性和不确定性,更符合信任的本质并易于实现。  相似文献   

19.
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance.  相似文献   

20.
In this paper, we investigate a joint modeling method for hard failures where both degradation signals and time‐to‐event data are available. The mixed‐effects model is used to model degradation signals, and extended hazard model is used for the time‐to‐event data. The extended hazard is a general model which includes two well‐known hazard rate models, the Cox proportional hazards model and accelerated failure time model, as special cases. A two‐stage estimation approach is used to obtain model parameters, based on which remaining useful life for the in‐service unit can be predicted. The performance of the method is demonstrated through both simulation studies and a real case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号