首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integrated gasification combined cycle (IGCC) as an efficient power generation technology with lowest specific carbon dioxide emissions among coal power plants is a very good candidate for CO2 capture resulting in low energy penalties and minimised CO2 avoidance costs. In this paper, the techno-economic characteristics of four different capture technologies, which are built upon a conventional reference case, are studied using the chemical process simulation package “ECLIPSE”. The technology options considered are: physical absorption, water gas shift reactor membranes and two chemical looping combustion cycles (CLC), which employ single and double stage reactors. The latter system was devised to achieve a more balanced distribution of temperatures across the reactors and to counteract hot spots which lead to the agglomeration and the sintering of oxygen carriers. Despite the lowest efficiency loss among the studied systems, the economic performance of the double stage CLC was outperformed by systems employing physical absorption and water gas shift reactor membranes. Slightly higher efficiencies and lower costs were associated with systems with integrated air separation units. The estimation of the overall capital costs was carried out using a bottom-up approach. Finally, the CO2 avoidance costs of individual technologies were calculated based on the techno-economic data.  相似文献   

2.
Biomass gasification processes are more commonly integrated to gas turbine based combined heat and power (CHP) generation systems. However, efficiency can be greatly enhanced by the use of more advanced power generation technology such as solid oxide fuel cells (SOFC). The key objective of this work is to develop systematic site-wide process integration strategies, based on detailed process simulation in Aspen Plus, in view to improve heat recovery including waste heat, energy efficiency and cleaner operation, of biomass gasification fuel cell (BGFC) systems. The BGFC system considers integration of the exhaust gas as a source of steam and unreacted fuel from the SOFC to the steam gasifier, utilising biomass volatilised gases and tars, which is separately carried out from the combustion of the remaining char of the biomass in the presence of depleted air from the SOFC. The high grade process heat is utilised into direct heating of the process streams, e.g. heating of the syngas feed to the SOFC after cooling, condensation and ultra-cleaning with the Rectisol® process, using the hot product gas from the steam gasifier and heating of air to the SOFC using exhaust gas from the char combustor. The medium to low grade process heat is extracted into excess steam and hot water generation from the BGFC site. This study presents a comprehensive comparison of energetic and emission performances between BGFC and biomass gasification combined cycle (BGCC) systems, based on a 4th generation biomass waste resource, straws. The former integrated system provides as much as twice the power, than the latter. Furthermore, the performance of the integrated BGFC system is thoroughly analysed for a range of power generations, ~100–997 kW. Increasing power generation from a BGFC system decreases its power generation efficiency (69–63%), while increasing CHP generation efficiency (80–85%).  相似文献   

3.
The integration in a natural gas combined cycle (NGCC) of a novel process for H2 production using a chemical Ca–Cu loop was proposed. This process is based on the sorption‐enhanced reforming process for H2 production from natural gas with a CaO/CaCO3 chemical loop, but including a second Cu/CuO loop to regenerate the Ca‐sorbent. An integration of this system into a NGCC was proposed and a full process simulation exercise of different cases was carried out. Optimizing the operating conditions in the Ca–Cu looping process, 8.1% points of efficiency penalty with respect to a state‐of‐the‐art NGCC are obtained with a CO2 capture efficiency of 90%. It was demonstrated that the new process can yield power generation efficiencies as high as any other emerging and commercial concepts for power generation from NGCC with CO2 capture, but maintaining competing advantages of process simplification and compact pressurized reactor design inherent to the Ca–Cu looping system. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2780–2794, 2013  相似文献   

4.
A stand‐alone system for power generation from biogas‐based on a commercial SOFC module in the 1 kWe range shall demonstrate its applicability to biogas, quantify the efficiency gain compared to conventional combined heat and power technology and justify further development toward SOFC modules in the hundreds of kilowatt range. The system includes biogas cleaning, combined dry and steam reforming, electrochemical oxidation of synthesis gas, offgas burning, and heat usage for steam generation and support of the endothermic reforming reaction. The system demonstrated a performance of 1 kWe at 52% gross efficiency for a synthetic biogas containing 55 vol.% CH4 during 500 h in the lab. In addition, the performance using real biogas derived from the wastewater treatment process of a sugar plant was demonstrated for different operating points. Based on the experimentally validated results, it is possible to predict the benefit of operating larger SOFC biogas systems. Investment costs of 2.5 times compared to the conventional technology of a 75 kWe biogas unit get paid off due to higher electricity revenues over time.  相似文献   

5.
液态空气储能技术是一种环境适应性好、容量大的电能存储技术,将液态空气储能技术与整体煤气化联合循环发电系统(IGCC)相结合,利用液空储能技术获取燃气轮机发电所需的高压空气,提高燃气轮机的出功,同时提高IGCC发电系统调峰、调频的能力,提高电能质量。本文从热力学角度出发,对该新型整体煤气化联合循环发电系统进行分析计算,建立系统物质和能量平衡,计算了系统的主要工艺参数。结果表明,净功率为150MW的液态空气-整体煤气化联合循环发电系统,燃气轮机净功率为95.9MW,汽轮机功率为53.9MW,系统热效率为52.8%;相同参数下未应用液态空气储能技术的整体煤气化联合循环发电机组功率为151.4MW,而传统简单循环燃气发电机组热效率仅为35.8%。  相似文献   

6.
Wei Han 《Fuel》2011,90(1):263-271
This paper proposes a novel power generation system that implements mutually beneficial use of natural gas and coal. In conventional power plants fossil fuels are usually directly burned with air to convert the chemical energy to thermal energy for power generation. In combustion processes, about 30% of exergy of fuels is destructed, and the decrease in the irreversibility of combustion processes has large potential to improve the performance of power plants. The new system attempts to use chemical exergy of fuels before combustion through coordinated use of coal and natural gas. First approximate 60% of coal is gasified in a gasifier with air and steam as oxidant, then, the unconverted residuals (char) and natural gas are utilized synthetically based on the method of char-fired reforming to generate syngas, in which the combustion of char will drive the methane/steam-reforming reaction. The fuel gas from the partial gasification of coal and syngas from char-fired reforming are mixed together and fed into a combined cycle for power generation. As a result, the overall thermal efficiency of the new system is about 51.5% based on the current turbine technologies and the net thermal efficiency of coal to electricity of the new system can reach near 48.6%. The results obtained here may provide a new way of using coal and natural gas more efficiently and economically.  相似文献   

7.
This article presents a novel, systematic, and robust procedure for driver and power plant selection based on mathematical programming. The discrete nature of gas turbines is considered as gas turbine drivers and gas turbine‐based power plants are selected from a group of candidates. Plant availability with considering parallel compression has also been included, which allows a more comprehensive exploitation of the trade‐offs between capital costs, operating costs, and availability. When neglecting process heating and any steam equipment, the formulation can be applied to heavily power dominated processes, such as LNG. However, a more comprehensive formulation, allowing waste heat recovery and the integration with a multilevel steam system, is also proposed to produce more thermally efficient systems. This approach proved to be flexible and robust and is the first in producing solutions ranging from no‐steam to all‐steam systems, including all‐gas turbine, all‐motor and hybrid gas turbine/motor/steam systems. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

8.
This paper assesses, from a thermodynamic perspective, the conversion of coal to power and hydrogen through gasification simultaneously with a dual chemical looping processes, namely chemical looping air separation (CLAS) and water–gas shift with calcium looping CO2 absorption (WGS-CaL). CLAS offers an advantage over other mature technologies in that it can significantly reduce its capital cost. WGS-CaL is an efficient method for hydrogen production and CO2 capture. The three major factors, oxygen to coal (O/C), steam to coal (S/C) and CaO to coal (Ca/C) were analyzed. Moreover, the comparisons of this suggested process and the traditional processes including integrated gasification combined cycle (IGCC), integrated gasification combined cycle with carbon capture and storage (IGCC-CCS) and integrated gasification combined cycle with calcium-based chemical looping (IGCC-CaL) were discussed. And, the exergy destruction analysis of this suggested process has also been calculated.  相似文献   

9.
A thermodynamically oriented approach for the integrated design of a combined cycle cogeneration plant (CCCP) meeting a given sites requirements for process steam and power has been developed. It has been shown that the most efficient plant, for a targeted stack temperature, is achieved when the gas turbine cycle is designed for maximum specific net work and the steam turbine cycle is designed for maximum cycle efficiency. Based on this approach a computer program for rigorous analysis has also been developed.  相似文献   

10.
11.
A chemical looping combustion (CLC) combined cycle with coke oven gas as fuel and NiO/NiAl2O4 as an oxygen carrier is proposed. The system was simulated by Aspen Plus® and the oxygen carrier circulation ratio was calculated. The effects of key operational temperatures and different gas turbines on the system performance were investigated. Under optimized conditions, a high CO2 capture efficiency could be achieved. To capture CO2 thoroughly, the PG6561B gas turbine can be employed, allowing for nearly 100 % CO2 capture efficiency.  相似文献   

12.
煤炭热力学高效和化学高价值利用新工艺   总被引:2,自引:1,他引:1       下载免费PDF全文
提出一种煤炭热力学高效和化学高价值利用新工艺(TCCUC),包括煤炭拔头技术-半焦富氧直燃制备燃气轮机高温工质系统-燃气发电-蒸汽发电系统-CO2捕集技术-干馏拔头产物提质处理技术六个技术模块。该工艺通过煤干馏拔头和焦油加氢等技术,对煤中大分子碳氢化合物进行适当热解和对热解产物焦油加氢处理得到高价值的碳氢液体燃料,实现煤炭的化学高价值利用;通过高温过滤、半焦直燃、燃气轮机与蒸汽轮机相结合等方法,实现对煤炭燃烧过程中高位热能的充分利用,进一步提高热-电联产效率。  相似文献   

13.
热电联产及其燃气轮机蒸汽联合循环   总被引:1,自引:0,他引:1  
陈本刚 《化肥设计》2004,42(6):55-57
阐述了各种热电联产及燃气轮机蒸汽联合循环的形式、适用燃料及效率,介绍了燃气轮机联合循环发电及供热在我国合成氨厂的应用,指出燃气-蒸汽联合循环热电联产将是热电联产的发展方向。  相似文献   

14.
气化工艺特性对IGCC效率的影响   总被引:1,自引:1,他引:1  
影响煤气化联合循环总效率的五个主要因素为煤转化率、燃气轮机循环,蒸汽循环,热旁路比率和发电效率。其中以煤转化率影响最大,它将包括产品气的显热和剩余蒸汽。在任何气化装置中气化炉是最主要单元并极大地影响气化性能。为改善气化效率,所有第二代气化方法均已引入加压操作。本文讨论了高温操作、生严能力放大、负荷跟踪能力、加煤方式、气化剂和煤气净化,同时提出仍待开发的某些值得注意的问题。  相似文献   

15.
Wen Cao  Danxing Zheng   《Fuel》2007,86(17-18):2864-2870
This paper proposes a novel power cycle system composed of chemical recuperative cycle with CO2–NG (natural gas) reforming and an ammonia absorption refrigeration cycle. In which, the heat is recovered from the turbine exhaust to drive CO2–NG reformer firstly, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters on performance is discussed. Based on 1 kg s−1 of methane feedstock and the turbine inlet temperature of 1573 K, the simulation results shown that the optimized net power generation efficiency of the cycle rises up to 49.6% on the low-heating value and the exergy efficiency 47.9%, the new cycle system reached the net electric-power production 24.799 MW, the export chilled load 0.609 MW and 2.743 kg s−1 liquid CO2 was captured, achieved the goal of CO2 and NOx zero-emission.  相似文献   

16.
Gasification technology, which converts fossil fuels into either combustible gas or synthesis gas (syngas) for subsequent utilization, offers the potential of both clean power and chemicals. Especially, IGCC is recognized as next power generation technology which can replace conventional coal power plants in the near future. It produces not only power but also chemical energy sources such as H2, DME and other chemicals with simultaneous reduction of CO2. This study is focused on the determination of operating conditions for a 300 MW scale IGCC plant with various feedstocks through ASPEN plus simulator. The input materials of gasification are chosen as 4 representative cases of pulverized dry coal (Illinois#6), coal water slurry, bunker-C and naphtha. The gasifier model reflects on the reactivity among the components of syngas in the gasification process through the comparison of syngas composition from a real gasifier. For evaluating the performance of a gasification plant from developed models, simulation results were compared with a real commercial plant through approximation of relative error between real operating data and simulation results. The results were then checked for operating characteristics of each unit process such as gasification, ash removal, acid gas (CO2, H2S) removal and power islands. To evaluate the performance of the developed model, evaluated parameters are chosen as cold gas efficiency and carbon conversion for the gasifier, power output and efficiency of combined cycle. According to simulation results, pulverized dry coal which has 40.93% of plant net efficiency has relatively superiority over the other cases such as 33.45% of coal water slurry, 35.43% of bunker-C and 30.81% of naphtha for generating power in the range of equivalent 300 MW.  相似文献   

17.
Three biomass gasification‐based hydrogen and power coproduction processes are modeled with Aspen Plus. Case 1 is the conventional biomass gasification coupled with a shift reactor, cases 2 and 3 involve integration of biomass gasification with iron‐based and calcium‐based chemical looping systems. The effects of important process parameters on the performance indicators such as hydrogen yield and efficiencies are evaluated by sensitivity analyses. These parameters include gasification temperature, molar ratios of steam to biomass in the gasifier, Fe2O3 to syngas in the fuel reactor, Fe/FeO to steam in the steam reactor, CaO to CO, and steam to CO in the carbonator. The energy and exergy balance distributions for the above three cases are comprehensively discussed and compared. Furthermore, techno‐economic assessments are performed to evaluate the three cases in terms of capital cost, operating cost, and leveled cost of energy.  相似文献   

18.
Gas‐turbine‐based cogeneration systems have been widely used in different applications in recent years. Although the most common method of using gas turbine exhaust energy is through the generation of steam in a heat recovery boiler, there are some applications where the exhaust energy has been directly used for drying or process fluid heating. In this work, direct integration of a gas turbine with a process was fully investigated in the context of pinch technology. This investigation includes simple gas turbine and gas turbines equipped with recuperator and afterburner. It was found that the best thermodynamic efficiency in a direct gas turbine system is achieved when two conditions are met: first, turbine inlet temperature is maximized, second, optimum pressure ratio is that which yields the maximum specific network. Two total cost optimization methods were also introduced. The first method is based on the assumption that power produced equates to power demand. In the second approach the power export opportunity was also considered. Finally, illustrative examples have been presented to show how approaches can be applied in practice.  相似文献   

19.
This work focuses on the techno-economic assessment of bituminous coal fired sub- and super-critical pulverised fuel boilers from an oxyfuel based CO2 capture point of view. At the initial stage, two conventional power plants with a nominal power output of above 600 MWe based on the above steam cycles are designed, simulated and optimised. Built upon these technologies, CO2 capture facilities are incorporated within the base plants resulting in a nominal power output of 500 MWe. In this manner, some sensible heat generated in the air separation unit and the CO2 capture train can be redirected to the steam cycle resulting in a higher plant efficiency. The simulation results of conventional sub- and super-critical plants are compared with their CO2 capture counterparts to disclose the effect of sequestration on the overall system performance attributes. This systematic approach allows the investigation of the effects of the CO2 capture on both cycles. In the literature, super-critical plants are often considered for a CO2 capture option. These, however, are not based on a systematic evaluation of these technologies and concentrate mainly on one or two key features. In this work several techno-economic plant attributes such as the fuel consumptions, the utility usages, the plant performance parameters as well as the specific CO2 generation and capture rates are calculated and weighed against each other. Finally, an economic evaluation of the system is conducted along with sensitivity analyses in connection with some key features such as discounted cash flow rates, capital investments and plant efficiencies as well as fuel and operating costs.  相似文献   

20.
Primary energy savings and CO2 reduction is one of the key motivations for the use of fuel cell systems in the energy sector. A benchmark of domestic cogeneration by PEMFC with existing large scale power production systems such as combined steam‐gas turbine cycle, clearly reveals that only fuel cell systems optimising overall energy efficiency (> 85%) and electrical efficiencies (> 35%) show significant primary energy savings, about 10%, compared with the best competing technology. In this context, fuel processing technology plays a dominant role. A comparison of autothermal and steam reforming concepts in a PEMFC system shows inherent advantages in terms of efficiency at low complexity for the latter. The main reason for this is that steam reforming allows for the straightforward and effective use of the anode‐off gas energy in the reformer burner. Consequently, practical electrical system efficiencies over 40% seem to be achievable, most likely by steam reformers. FLOX®‐steam reforming technology has reached a high state of maturity, offering diverse advantages including: compact design, stable anode off‐gas usage, high efficiency, as well as simple control behaviour. Scaling of the concept is straightforward and offers an opportunity for efficient adaptation to smaller (1 kW) and larger (50 kW) units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号