首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
The work of this paper addresses the study and application of control strategies based on the passivity of a sensorless induction motor (IM) in order to guarantee a high performance operation and to increase reliability at a lower cost. This control approach based on the passivity or the energy formulation is generally simple and physically meaningful. It achieves the control objective by reshaping the system natural energy and then injecting a damping term. A full-order adaptive observer is also considered to estimate the IM rotor flux and mechanical speed. These estimated quantities are then used in the control scheme. The observer gain is synthesized in the way that it minimizes the instability zone in the regenerative mode to a line in the torque–speed plane. The control-observer set is tested on the trajectories of the various operating modes (motor mode, regenerating mode and low speed mode).  相似文献   

2.
Fu TJ  Xie WF 《ISA transactions》2005,44(4):481-490
This paper presents a novel sliding-mode control method for torque control of induction motors. The control principle is based on sliding-mode control combined with space vector modulation technique. The sliding-mode control contributes to the robustness of induction motor drives, and the space vector modulation improves the torque, flux, and current steady-state performance by reducing the ripple. The Lyapunov direct method is used to ensure the reaching and sustaining of sliding mode and stability of the control system. The performance of the proposed system is compared with those of conventional sliding-mode controller and classical PI controller. Finally, computer simulation results show that the proposed control scheme provides robust dynamic characteristics with low torque ripple.  相似文献   

3.
This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor.  相似文献   

4.
This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions.  相似文献   

5.
This paper presents a speed sensorless control scheme named as finite control set-model predictive current control (FCS-MPCC) using a modified fictitious ohmic quantity (R) based model reference adaptive system (MRAS) for grid-connected doubly-fed induction machine (DFIM) drive. The variables of the reference model of this speed sensorless scheme (R-MRAS) are represented in stationary reference frame while those for the adaptive model are denoted in synchronously rotating reference frame. The sensorless formulation thus obtained is completely independent of any stator/rotor resistance terms. The scheme is also devoid of any stator/rotor flux estimation. Moreover, the intuitiveness of FCS-MPCC brings in additional flexibility in comparison to the conventional control techniques like field oriented control (FOC) and direct torque control (DTC). The overall scheme demonstrates faster execution time than FOC/DTC based control of DFIM drive. The proposed control algorithm is simulated and tested for limited speed range application in MATLAB/Simulink. The validation of simulation results are further done by experimentation on a dSPACE-1103 based DFIM laboratory setup.  相似文献   

6.
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection.  相似文献   

7.
To improve the performance of permanent magnet synchronous motor (PMSM) drives, a sensorless control scheme based on a novel iterative flux sliding-mode observer (IFSMO) is proposed in this paper. Two major drawbacks of the conventional sliding-mode observer (SMO), namely, chattering phenomena and high-order harmonics, are discussed. These drawbacks affect the estimation accuracy of the SMO and reduce the control reliability of the system. To eliminate high-order harmonics, a flux SMO is designed by expanding the PMSM state equations with the PM flux. The flux SMO estimates the rotor speed and position using the flux linkage instead of back-EMF information. Moreover, to reduce the chattering in the estimation results, the proposed flux SMO is iteratively used in one current sampling period to adaptively adjust the observer gain. An overall PMSM sensorless control system based on the proposed IFSMO is designed, and an experimental platform using the TMS320F28335 digital signal processor (DSP) controller is built. The superior chattering reduction and harmonic suppression characteristics of the proposed IFSMO are experimentally validated, and the experimental results verify the feasibility of using the proposed IFSMO-based PMSM sensorless scheme in practical applications.  相似文献   

8.
陈高  杨家强 《机电工程》2011,28(9):1090-1094
为了提高永磁同步电机控制器的控制性能,设计和开发了一套以浮点型TMS320F28335数字信号处理器(DSP)为控制核心,主回路为“交-直-交”拓扑结构的永磁同步电机数字化矢量控制器.与采用TMS320LF2407、TMS320F2812等传统定点型DSP为控制核心的永磁同步电机控制器相比,其具有编程简单、运算速度快、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号