首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Tetrapod-shaped zinc oxide whisker-film emitters were fabricated on indium tin oxide glass substrates using a screen-printing method. The influence of annealing temperature on field emission of tetrapod-whisker ZnO-based emitters was investigated. X-ray diffraction and scanning electronic microscopy were applied to characterize the structure and the surface morphology of the deposited films. It was found that ZnO-based emitters annealed at 250 °C have the best field emission properties with the lowest turn-on field of 2.6 V/μm at a current density of 1 μA/cm2, the lowest threshold field of 5.2 V/μm at a current density of 1 mA/cm2 and high field emission enhancement factor of 4129. Moreover, films with homogeneous, fine and dense light spots with low emission current fluctuation of 1.7% were obtained from samples annealed at 250 °C.  相似文献   

2.
In this study, we investigated the electrical and mechanical characteristics of an Ag-grid flexible transparent electrode (FTE) as a flexible and even foldable transparent electrode for flexible electronic devices. The Ag-grid FTE was fabricated on a polyethylene terephthalate substrate using the electrohydrodynamic (EHD) jet printing process. We achieved a fine pattern of a line width of 4.6 μm. The Ag-grid FTE exhibited the sheet resistances of ~ 4 Ω/sq. and optical transmittance of around 80% with a pitch of 150 μm. We also used the carbon treated black metal-nanoparticles to lower the haze up to 1%. The effects of the sintering temperature on the microstructure and sheet resistance were investigated. From the sintering temperature of 150 °C, a stable necking between nano-particles began to form, and the sheet resistance substantially decreased. The mechanical flexibility and durability of the Ag-grid FTEs were investigated via bending, stretching, dynamic/static fatigue tests, and adhesion tests. The outward bending test results showed that the Ag-grid FTE can be bent up to 3 mm without failure of the electrode. The stretching test indicated that the Ag-grid FTEs can be stretched to a tensile strain of 9%; however, the Ag-grid was slightly vulnerable at the extreme bending radius in the bending cyclic fatigue tests due to severe strain accumulation. The Ag-grid FTEs exhibited a very stable static bending fatigue property during the 1000 h test as well as an excellent adhesion property. These results indicate that the Ag-grid FTE is a promising electrode scheme for bendable or foldable electronic devices.  相似文献   

3.
Various fine pitch chip-on-film (COF) packages assembled by (1) anisotropic conductive film (ACF), (2) nonconductive film (NCF), and (3) AuSn metallurgical bonding methods using fine pitch flexible printed circuits (FPCs) with two-metal layers were investigated in terms of electrical characteristics, flip chip joint properties, peel adhesion strength, heat dissipation capability, and reliability. Two-metal layer FPCs and display driver IC (DDI) chips with 35 μm, 25 μm, and 20 μm pitch were prepared. All the COF packages using two-metal layer FPCs assembled by three bonding methods showed stable flip chip joint shapes, stable bump contact resistances below 5 mΩ, good adhesion strength of more than 600 gf/cm, and enhanced heat dissipation capability compared to a conventional COF package using one-metal layer FPCs. A high temperature/humidity test (85 °C/85% RH, 1000 h) and thermal cycling test (T/C test, ?40 °C to + 125 °C, 1000 cycles) were conducted to verify the reliability of the various COF packages using two-metal layer FPCs. All the COF packages showed excellent high temperature/humidity and T/C reliability, however, electrically shorted joints were observed during reliability tests only at the ACF joints with 20 μm pitch. Therefore, for less than 20 μm pitch COF packages, NCF adhesive bonding and AuSn metallurgical bonding methods are recommended, while all the ACF and NCF adhesives bonding and AuSn metallurgical bonding methods can be applied for over 25 μm pitch COF applications. Furthermore, we were also able to demonstrate double-side COF using two-metal layer FPCs.  相似文献   

4.
《Solid-state electronics》2006,50(9-10):1640-1648
Resonant-cavity-enhanced HgCdTe structures have been grown by molecular beam epitaxy, and photoconductors have been modelled and fabricated based on these structures. Responsivity has been measured and shows a peak responsivity of 8 × 104 V/W for a 50 × 50 μm2 photoconductor at a temperature of 200 K. The measured responsivity shows some agreement with the modelled responsivity across the mid-wave infrared window (3–5 μm). The measured responsivity is limited by surface recombination, which limits the effective lifetime to ≈15 ns. The optical cut-off of the detector varies with temperature as modelled from 5.1 μm at 80 K to 4.4 μm at 250 K. There is strong agreement between modelled peak responsivity and measured peak responsivity with varying temperature from 80 to 300 K.  相似文献   

5.
Measurements of nH were performed. nH values showed a distinct increase at temperatures below ~90 K (1.1 μm n-InGaAs samples) and a decrease at temperatures below ~30 K (7 μm n-InGaAs samples), depending on the doping level. These trends might be related to the magnetoresistance (MR) of the n-InGaAs samples. The MR behavior of the n-InGaAs samples with respect to magnetic field and temperature was apparently dependent on the doping level. Two n-InGaAs samples, one of which had a thin InGaAs epilayer (1.1 μm) and the other with a thicker (7 μm) epilayer, showed interesting behavior at low temperature. Their behavior at magnetic fields of approximately −15000 to +15,000 G were determined. The resistivity ((ρG – ρ0)/ρ0) of the 1.1 μm sample was negative at temperatures lower than 30 K.  相似文献   

6.
In this work, thermal cycling (T/C) reliability of anisotropic conductive film (ACF) flip chip assemblies having various chip and substrate thicknesses for thin chip-on-board (COB) packages were investigated. In order to analyze T/C reliability, shear strains of six flip chip assemblies were calculated using Suhir’s model. In addition, correlation of shear strain with die warpage was attempted.The thicknesses of the chips used were 180 μm and 480 μm. The thicknesses of the substrates were 120, 550, and 980 μm. Thus, six combinations of flip chip assemblies were prepared for the T/C reliability test. During the T/C reliability test, the 180 μm thick chip assemblies showed more stable contact resistance changes than the 480 μm thick chip assemblies did for all three substrates. The 550 μm thick substrate assemblies, which had the lowest CTE among three substrates, showed the best T/C reliability performance for a given chip thickness.In order to investigate what the T/C reliability performance results from, die warpages of six assemblies were measured using Twyman–Green interferometry. In addition, shear strains of the flip chip assemblies were calculated using measured material properties of ACF and substrates through Suhir’s 2-D model. T/C reliability of the flip chip assemblies was independent of die warpages; it was, however, in proportion to calculated shear strain. The result was closely related with material properties of the substrates. The T/C reliability of the ACF flip chip assemblies was concluded to be dominatingly dependent on the induced shear strains of ACF layers.  相似文献   

7.
High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ~0.8 to 4 μm, >5 W in a near IR SC extending from ~0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ~0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ~3.9 W in an SC extending from ~0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ~1.5 to ~2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ~2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ~1.9 to 4.5 μm with ~2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.  相似文献   

8.
Patterning techniques of Al micro/nano-structures become more and more critical as optical components and microelectronic devices continue to be scaled down. In this work, we fabricated gap-filled Al lines in SiO2/Si masters by using the direct thermal imprint of molten Al. As a result, gap-filled Al lines with width ranging from 0.25 to 20 μm and depth ranging from 6 to 127 μm could be achieved without any further processing step such as CVD and PVD. The process studied here has shown the possibility to extend trench filling capability to 0.25 μm structures with 24:1 aspect ratio, which are difficult to be obtained by other conventional Al metallization methods.  相似文献   

9.
We propose a method to image inside deep trenches (50 μm) using spray-coated resist and the ASML PAS 5500/100 system with the new functionality multi-step imaging. Multi-step imaging allows extending the focus offset range of the PAS 5500/100 system from ±30 μm to ±200 μm. Isolated trenches and contact holes were both imaged inside the deep trenches and on the surface of the wafer to study the versatility of the new functionality. A resolution of 700 nm in 3 μm thick photoresist, at the bottom of 50 μm deep, 200 μm wide trench, was obtained with this process. Finally, multi-focus exposure that consists in exposing the same image several times at various focus offsets was performed in order to image thick photoresist on high topographic substrates.  相似文献   

10.
We report on preparation and electrical characterization of InAlN/AlN/GaN metal–oxide–semiconductor high electron mobility transistors (MOS HEMTs) with Al2O3 gate insulation and surface passivation. About 12 nm thin high-κ dielectric film was deposited by MOCVD. Before and after the dielectric deposition, the samples were treated by different processing steps. We monitored and analyzed the steps by sequential device testing. It was found that both intentional (ex situ) and unintentional (in situ before Al2O3 growth) InAlN surface oxidation increases the channel sheet resistance and causes a current collapse. Post deposition annealing decreases the sheet resistance of the MOS HEMT devices and effectively suppresses the current collapse. Transistors dimensions were source-to-drain distance 8 μm and gate width 2 μm. A maximum transconductance of 110 mS/mm, a drain current of ~0.6 A/mm (VGS = 1 V) and a gate leakage current reduction from 4 to 6 orders of magnitude compared to Schottky barrier (SB) HEMTs was achieved for MOS HEMT with 1 h annealing at 700 °C in forming gas ambient. Moreover, InAlN/GaN MOS HEMTs with deposited Al2O3 dielectric film were found highly thermally stable by resisting 5 h 700 °C annealing.  相似文献   

11.
The field emission behavior of aligned carbon nanotubes (CNTs) is remarkably improved by decorating their surfaces with Ti nanoparticles through a sputtering process. The CNT/Ti(4 nm) sample shows a low turn-on field of 0.63 V/μm at 10 μA/cm2, low threshold field of 1.06 V/μm at 1 mA/cm2, and maximum field emission current density of 23 mA/cm2 at 1.80 V/μm. The enhanced field emission properties of the CNT/Ti samples are attributed to the added defect sites and Ti nanoparticles, which increase the field enhancement factor and density of emission sites. Stability measurements indicate that the Ti coating, which acts as a protective layer, also strengthens the field emission stability of the CNT arrays. Moreover, the extent of hysteresis in the current–voltage sweep highly depends on the voltage-sweep speed.  相似文献   

12.
《Optical Fiber Technology》2013,19(2):132-138
Modal dispersion compensation is demonstrated by using electrical adaptive equalization for a multi-mode fiber (MMF) transmission with multipath interference resulting from mode conversion caused by axial deviations in the transmission line. We reveal that we can realize a 20 km 50 μm-core GI-MMF transmission even if mode conversions are intentionally introduced by two 5 μm axial deviations in the transmission line.  相似文献   

13.
A band reject filter with tuning capability is presented on a CPW transmission line on silicon substrate using comb line and RF MEMS variable capacitor, enabling compatibility with planar IC technology. A conventional CPW on a substrate consists of a central strip conductor with semi-infinite ground planes on either side. A comb line is etched on the signal line of the CPW and the MEMS bridge capacitor is put on the same line in shunt. Tunability of the filter is achieved by putting the MEMS bridge in either up or down state. The rejection at the centre frequency of stop bands are around ?40.24 dB for down state and ?38.21 dB for up state of the bridge. A low insertion loss, as low as ?0.68 dB, is obtained in the pass band. The proposed device structure is simulated using ANSOFT HFSS v13® for RF analysis and COVENTORWARE (2008)® for mechanical and electromechanical characterization, both static and transient analysis.  相似文献   

14.
《Organic Electronics》2014,15(8):1836-1842
A copper oxide (CuO) nanoparticle ink was inkjet printed and photosintered in order to optimize electrical performance as a function of pattern dimension. For a given photosintering condition, electrical conductance varied strongly with line widths, ranging from 100 to 300 μm, illustrating the implications of printing and sintering complex circuit designs with varying feature sizes. By tuning the time delay between printing and sintering, exposure wavelength, radiant energy, pulse width and the distance between the light-source and substrate, photosintering conditions were optimized so that variations in sheet resistance for different line widths were minimized. Using optimized photosintering conditions, a sheet resistance value as low as 150 mΩ/□ (resistivity of 9 μΩ cm) and current carrying capacity of 280 mA for a 300 μm wide trace was achieved.  相似文献   

15.
In this letter, we demonstrate the feasibility of applying TiAl alloy film for the fabrication of bimorph actuators. The TiAl alloy films were prepared by thermal annealing at 400°C of Ti/Al multilayers, which were deposited by DC magnetron sputtering from Ti and Al targets. The microstructure and surface morphology of TiAl alloy films were analyzed by X-ray diffraction and scanning electron microscopy, which showed that TiAl alloy film is formed in the mixed phases of TiAl3 and Ti36Al64, depending on the deposition conditions. The resistivity of TiAl film is about 9 μΩ cm, and the stress is about 200 MPa. Our nano-indentation measurements showed that the Young's modulus and hardness of TiAl alloy films are 175 and 6.5 GPa, respectively, which are larger than that of Al and comparable to Si. We have successfully fabricated the bimorph actuators based on the TiAl alloy films and our test cantilevers up to 500 μm long showed very straight with tip bending as small as ±5 μm, indicating negligible stress gradient in TiAl film. Our preliminary testing results indicated that TiAl alloy film has potential application for bimorph actuators.  相似文献   

16.
We analyzed the noise characteristics of 0.18 μm and 0.35 μm nMOSFETs with a gate area of 1.1 μm2 in the frequency range of 1 Hz to 100 kHz. Both two- and four-finger devices were investigated and analyzed. The experimental results show that the noise of 0.35 μm gate-length nMOSFET possesses lower 1/f component than the 0.18 μm one, whereas the four-finger devices reveal less 1/f noise than those of with two-finger ones. Furthermore, we used time domain measurement of drain current and also the statistical analysis of wafer level on the random telegraph signals (RTS) tests, and the results showed that RTS noise is higher in devices with a 0.35 μm gate-length, and devices with a smaller gate finger width produce more RTS noise than devices with a larger gate finger width.  相似文献   

17.
《Organic Electronics》2008,9(6):1101-1106
We report on mobilities up to 3.6 cm2/V s in organic field-effect transistors (OFETs) with solution-processed dithiophene- and dibenzo-tetrathiafulvalene (DT- and DB-TTF) single crystals as active materials. In the devices, the channel length varies from 100 μm down to sub 100 nm, and the SiO2 thickness is either 100 nm, 50 nm, or 20 nm. The devices exhibit excellent operation characteristics with an on/off-ratio exceeding 106. Temperature dependent measurements between 50 and 400 K reveal a thermally activated transport with increased activation above 200 K. The mobility exhibits exponential activation with two distinct exponents.  相似文献   

18.
The originality of this work consists in printing on ceramic tapes conductive silver tracks that reach a low resistivity by flexography process. Flexography is a solution for the mass production of multimaterial microdevices offering a huge potential of commercialisation in the near future. In order to test the flexography printing process for microelectronic application on Low Temperature Cofired Ceramic (LTCC) tapes, a screen printing paste was optimised to reach flexography printing requirements. Ink with 30% silver per weight was prepared and printed by flexography, roll to roll (R2R) process, on LTCC substrates. Three to five print passes were performed. Printed lines were sintered during 10 min at a peak temperature of 850 °C under normal air atmosphere. Conductive lines, with a mean width of 190 μm, a mean thickness of 1.50 μm and a resistivity of 2.8 × 10?8 Ω m close to bulk silver resistivity, were achieved after sintering.  相似文献   

19.
《Organic Electronics》2007,8(5):505-512
We have utilized the π–π interactions between 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecules and temperature-induced morphology changes to synthesize one-dimensional (1D) nanostructures of PTCDA on a heated (ca. 100 °C) titanium substrate through vacuum sublimation. Because of the pillared Ti structures and the presence of reactive Ti–Cl sites, the titanium substrate played a crucial role in assisting the PTCDA molecules to form 1D nanostructures. The average diameter of the nanofibers deposited on the Ti-CVD substrate, a Ti substrate formed by chemical vapor deposition (CVD), at 100 °C was ca. 84 nm, with lengths ranging from 100 nm to 3 μm. When the PTCDA nanofibers were biased under vacuum, the emission current remained stable. The turn-on electric field for producing a current density of 10 μA/cm2 was 8 V/μm. The maximum emission current density was 1.3 mA/cm2, measured at 1100 V (E = 11 V/μm). From the slope of the straight line obtained after plotting ln(J/E2) versus 1/E, we calculated the field enhancement factor β to be ca. 989. These results demonstrate the PTCDA nanofibers have great potential for applicability in organic electron-emitting devices.  相似文献   

20.
《Microelectronics Reliability》2014,54(6-7):1378-1383
This paper presents the results of four-point bending tests investigating the effects of substrate strain on the growth ɛ of interfacial Cu–Sn inter-metallic compounds (IMCs). Test specimens were cut into strips, 27.5 mm in length and 5 mm in width, from 4 in. double polished silicon wafers. A very thin adhesion layer (Ta) was deposited on the silicon substrate by sputtering followed by a 10 μm thick layer of copper using electroplating. Finally, a 30 μm tin layer was deposited over the copper film also by electroplating. Samples were then placed in a furnace at 200 °C to undergo bending in order to introduce in-plane strain under tension or compression. Control samples also underwent the same treatment without applied strain. Our aim was to investigate the influence of substrate strain and aging time on the formation of IMCs (1.54 × 10−4, 2.3 × 10−4 and 3.46 × 10−4). The thickness and separation of each phase (Cu3Sn) and η (Cu6Sn5) are clearly visible in scanning electron microscope images. Compressive strain and tensile strain both increased the thickness of the IMC layer during the aging process; however, the effects of compressive strain were more pronounced than those of tensile strain. We hypothesize that the increase in IMC thickness is related to the strain enhanced out-diffusion of Cu towards the solder as well as strain in the underlying lattice at the diffusion interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号