首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高多关节机器人轨迹跟踪控制性能,提出了一种反馈线性化双模糊滑模控制方法。该方法在对机器人非线性动力学模型反馈线性化的基础上,设计了一种双模糊滑模控制器。通过设计一个模糊控制器,根据跟踪误差和误差变化率自适应地调整滑模面的斜率,从而加快响应速度。通过设计另一个模糊控制器,根据滑模面自适应地调整滑模控制的切换控制部分,从而减弱抖振。利用李亚普诺夫定理证明了控制系统的稳定性。针对空间三关节机器人进行了仿真实验,结果表明了所提方法的有效性。  相似文献   

2.
柔性宏刚性微空间机器人末端连续轨迹跟踪控制研究   总被引:6,自引:0,他引:6  
对一类柔性宏刚性微结构的空间机器人系统进行了运动学和动力学建模,介绍了采用微机械臂快速精确运动来补偿宏机械臂由于弹性形变和振动产生的末端误差的设计方案,并对此进行了简化。在此基础上设计了两种控制方案。一种是对宏机械臂和微机械臂都采用PD(比例微分)反馈控制,另一种是宏机械臂采用PD控制而微机械臂采用滑模变结构控制。最后进行了仿真试验,比较了两种控制方案的不同控制效果,并得出补偿算法是有效的,且滑模变结构控制在该试验中优于PD控制的结论。  相似文献   

3.
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.  相似文献   

4.
This paper addresses the design of attitude and airspeed controllers for a fixed wing unmanned aerial vehicle. An adaptive second order sliding mode control is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Moreover, this control does not require the knowledge of disturbance bounds and avoids overestimation of the control gains. Furthermore, in order to implement this controller, an extended observer is designed to estimate unmeasurable states as well as external disturbances. Additionally, sufficient conditions are given to guarantee the closed-loop stability of the observer based control. Finally, using a full 6 degree of freedom model, simulation results are obtained where the performance of the proposed method is compared against active disturbance rejection based on sliding mode control.  相似文献   

5.
为提高禽蛋腌制的工业化水平,确保腌制液温度稳定和产品品质,以禽蛋腌制温度控制为研究对象,设计了一种温度控制系统.该温度控制系统主要包括腌制箱、电加热炉、温度传感器和调压模块等.利用调压模块改变电加热管功率进而调整炉水温度,通过换热器调节腌制装置内部腌制液的温度.基于三阶滑模变结构设计了一种温度控制器,引入辅助变量项构建三阶微分动态方程,可消除传统滑模控制存在的抖振问题.仿真和试验结果表明,与常规 PID 控制相比,三阶滑模控制在稳定性、超调量和调节时间等方面均具有一定优势.腌制温度更加平稳,温度调节更加迅速,温差比较小,实际温度和设定温度之间的偏差小于 0.5℃ .  相似文献   

6.
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results.  相似文献   

7.
This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective.  相似文献   

8.
The velocity tracking control of a hydraulic servo system is studied. Since the dynamics of the system are highly nonlinear and have large extent of model uncertainties, such as big changes in load and parameters, a derivation and integral sliding mode variable structure control scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumption that the derivative of desired signal must be known in conventional sliding mode variable structure control, a nonlinear derivation controller is used to weaken the chattering of system. The design method of switching function in integral sliding mode control, nonlinear derivation coefficient and controllers of DI-SVSC is presented respectively. Simulation shows that the control approach is of nice robustness and improves velocity tracking accuracy considerably.  相似文献   

9.
为了满足Buck变换器由待机或轻载向较大负载状态快速转换的需求,基于对传统平均电流控制Buck变换器的动态性能分析,提出了一种改进的适用于断续导通模式/连续导通模式过程的滑模PI混合控制策略。该策略电压外环依据系统状态和导通模式分别采用PI控制器和滑模控制器,其中稳态工况应用PI控制器,负载增大动态工况根据导通模式转换为滑模控制器,并通过统一校正的平均电感电流实现导通模式的准确判断。该混合控制策略可以有效结合PI控制与滑模控制各自的稳态与动态性能优势。仿真和实验结果表明,相比于传统平均电流控制,本策略动态响应时间缩短约65%,电压跌落减小35%以上。  相似文献   

10.
This paper proposes a new compound fractional order integral terminal sliding mode control (FOITSMC) and proportional-derivative control (PD-FOITSMC) for the control of a MEMS gyroscope. In order to improve the robustness of the conventional integral terminal sliding mode control (ITSMC), a fractional integral terminal sliding mode surface is applied. The chattering problem in FOITSMC, which is usually generated by the excitation of fast un-modelled dynamic is the main drawback. A PD controller is employed in order to eliminate chattering phenomenon. The stability of the PD-FOITSMC is proved by Lyapunov theory. The performance of the proposed control method is compared with two other controllers such as ITSMC and FOITSMC. Numerical simulations clearly verified the effectiveness of the proposed control approach.  相似文献   

11.
Optimal second order sliding mode control for nonlinear uncertain systems   总被引:1,自引:0,他引:1  
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.  相似文献   

12.
In this paper, a new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control (AISMC) and a disturbance observer (DO). First, an integral sliding mode control (ISMC), in which the backstepping control technique is used as the nominal controller, is designed for the system. The major features, i.e., benefits and drawbacks, of the ISMC are discussed thoroughly. Then, to enhance the tracking performance of the system, an adaptive technique and a new disturbance observer based on sliding mode technique are developed and integrated into the ISMC. The stability of the closed-loop system is proved based on Lyapunov criteria. Computer simulation is performed to illustrate the tracking performance of the proposed controller and compare with the existing controllers for the tracking control of a surface vessel. The simulation results demonstrate the superior performance of the proposed strategy.  相似文献   

13.
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Mici? scheme for linear systems using simulations.  相似文献   

14.
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller  相似文献   

15.
To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler–turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler–turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input–output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions.  相似文献   

16.
A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances.  相似文献   

17.
Giam TS  Tan KK  Huang S 《ISA transactions》2007,46(3):399-409
High precision motion control of gantry stages has found numerous applications in the manufacturing industries where precise positioning is crucial. This paper presents a survey of existing control schemes as well as the development of enhanced schemes for the coordinated motion control of moving gantry stages. In particular, a robust control scheme is proposed which uses a feedback controller with a sliding mode to correct for the tracking error and to coordinate multiple axis to move in tandem. Simulation and experimental results will illustrate and compare the performance of the control schemes presented in the paper.  相似文献   

18.
An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers.  相似文献   

19.
This paper investigates the anti-unwinding finite-time attitude synchronization control problem for Spacecraft formation flying with external disturbances. Two finite-time controllers are designed based on rotation matrix and terminal sliding mode method. By designing a novel sliding mode surface, the first controller is developed when the upper bound of the external disturbances can be exactly known. However, this value is not always available in reality. In addition, the direct use of the upper bound of the external disturbances can result in the chattering problem. For the purpose of overcoming the disadvantage of the first controller, a modified control law is proposed, in which the adaptive law is applied to estimate the unknown value online. Theoretical analysis and numerical simulations are presented to demonstrate the validity of the proposed controllers.  相似文献   

20.
船用天然气发动机电子节气门自适应高阶滑模控制   总被引:1,自引:0,他引:1       下载免费PDF全文
针对船用天然气发动机电子节气门非线性控制问题以及高阶滑模控制存在的边界难以估计问题,提出了一种基于高阶 滑模理论的节气门自适应控制算法,设计了基于系统相平面轨迹收敛过程的自适应策略,为了增加控制算法的实用性,在自适 应策略的基础上设计了检测区域,通过判断系统状态与该区域的相对位置双向调节控制增益,以防止增益过大而导致控制精度 降低、控制能量浪费的问题;同时,采用鲁棒微分估计器,对不可观测量进行估计;最后,设计 3 种测试方案,将该算法与传统高 阶滑模算法进行实验对比。 实验结果表明:在阶跃信号下,该算法使系统响应速度提高 35% ,稳态误差均方根减小 37. 5% ;在正 弦信号下,系统最大稳态误差和稳态误差均方根分别减小 30% 和 22% 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号