首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flip chip on board (FCOB) is one of the most quickly growing segments in advanced electronic packaging. In many cases, assembly processes are not capable of providing the high throughputs needed for integrated surface mount technology (SMT) processing (Tummala et al, 1997). A new high throughput process using no-flow underfill materials has been developed that has the potential to significantly increase flip chip assembly throughput. Previous research has demonstrated the feasibility and reliability of the high throughput process required for FCOB assemblies. The goal of this research was to integrate the high throughput flip chip process on commercial flip chip packages that consisted of high lead solder balls on a polyimide passivated silicon die bonded with eutectic solder bumped pads on the laminate substrate interface (Qi, 1999). This involved extensive parametric experimentation that focused on the following elements: no-flow process evaluation and implementation on the commercial packages, reflow profile parameter effects on eutectic solder wetting of high lead solder bumps, interactions between the no-flow underfill materials and the package solder interconnect and tented via features, void capture and void formation during processing, and material set compatibility and the effects on long term reliability performance  相似文献   

2.
As a concept to achieve low-cost, high-throughput flip chip on board (FCOB) assembly, a new process has been developed implementing next generation flip chip processing based no-flow fluxing underfill materials. The low-cost, high throughput flip chip process implements large area underfill printing, integrated chip placement and underfill flow and simultaneous solder interconnect reflow and underfill cure. The goals of this study are to demonstrate feasibility of no flow underfill materials and the high throughput flip chip process over a range of flip chip configurations, identify the critical process variables affecting yield, analyze the yield of the high throughput flip chip process, and determine the impact of no-flow underfill materials on key process elements. Reported in this work is the assembly of a series of test vehicles to assess process yield and process defects. The test vehicles are assembled by depositing a controlled mass of underfill material on the chip site, aligning chip to the substrate pads, and placing the chip inducing a compression type underfill flow. The assemblies are reflowed in a commercial reflow furnace in an air atmosphere to simultaneously form the solder interconnects and cure the underfill. A series of designed experiments identify the critical process variables including underfill mass, reflow profile, placement velocity, placement force, and underfill material system. Of particular interest is the fact that the no-flow underfill materials studied exhibit an affinity for unique reflow profiles to minimize process defects  相似文献   

3.
As a concept to achieve high throughput low cost flip-chip assembly, a process development activity is underway, implementing next generation flip-chip processing based on large area underfill printing/dispensing, IC placement, and simultaneous solder interconnect reflow and underfill cure. The self-alignment of micro-BGA (ball grid array, BGA) package using flux and two types of no-flow underfill is discussed in this paper. A “rapid ramp” temperature profile is optimized for reflow of micro-BGA using no-flow underfill for self-aligning and soldering. The effect of bonding force on the self-alignment is also described. A SOFTEX real time X-ray inspection system was used to inspect samples to ensure the correct misalignment before reflow, and determine the residual displacement of solder joints after reflow. Cross-sections of the micro-BGA samples are taken using scanning electronic microscope. Our experimental results show that the self-alignment of micro-BGA using flux is very good even though the initial misalignment was greater than 50% from the pad center. When using no-flow underfill, the self-alignment is inferior to that of using flux. However, for a misalignment of no larger than 25% from the pad center, the package is also able to self-align with S1 no-flow underfill. However, when the misalignment is 37.5–50% from the pad center, there are 10–14% residual displacement after reflow. The reason is the underfill resistant force inhibiting the self-alignment of the package due to rapid increment of underfill viscosity during reflow. The self-alignment of micro-BGA package using no-flow underfill allows only <25% misalignment prior to the soldering. During assembling, although the bonding force does not influence on the self-alignment of no-flow underfill, a threshold bonding force is necessary to make all solder balls contact with PCB pads, for good soldering. The no-flow underfill is necessary to modify the fluxing/curing chemistry for overcoming the effect of tin metal salt produced during soldering on underfill curing, and for maintaining the low viscosity during soldering to help self-alignment.  相似文献   

4.
Flip chip on organic substrate has relied on underfill to redistribute the thermomechanical stress and to enhance the solder joint reliability. However, the conventional flip-chip underfill process involves multiple process steps and has become the bottleneck of the flip-chip process. The no-flow underfill is invented to simplify the flip-chip underfill process and to reduce the packaging cost. The no-flow underfill process requires the underfill to possess high curing latency to avoid gelation before solder reflow so to ensure the solder interconnect. Therefore, the temperature distribution of a no-flow flip-chip package during the solder reflow process is important for high assembly yield. This paper uses the finite-element method (FEM) to model the temperature distribution of a flip-chip no-flow underfill package during the solder reflow process. The kinetics of underfill curing is established using an autocatalytic reaction model obtained by DSC studies. Two approaches are developed in order to incorporate the curing kinetics of the underfill into the FEM model using iteration and a loop program. The temperature distribution across the package and across the underfill layer is studied. The effect of the presence of the underfill fillet and the influence of the chip dimension on the temperature difference in the underfill layer is discussed. The influence of the underfill curing kinetics on the modeling results is also evaluated.  相似文献   

5.
Wafer-level flip chips provide an innovative solution in establishing flip chip as a standard surface mount process. In this paper, the wetting of solder bumps within confining underfill during the reflow of a wafer-level flip chip assembly is addressed. For real time monitoring of an assembly during the reflow process, a system using a high-speed camera is utilized. The collapse of solder bumps on the chip in the vertical direction is found to be a prerequisite of solder wetting. Underfill voids and outgassing are found to cause chip drift and tilt during the reflow process. In addition, symmetry of the underfill flow and fillet formation is identified as a critical factor in maintaining chip to substrate alignment. During solder wetting of the metallization pads on the substrate, the underfill needs to maintain a low viscosity. With the selection of a thermally stable underfill and corresponding process development, wafer-level flip chip assemblies with good solder interconnects are demonstrated  相似文献   

6.
Flip chip attach on organic carriers is a novel electronic packaging assembly method which provides advantages of high input/output (I/O) counts, electrical performance and thermal dissipation. In this structure, the flip chip device is attached to organic laminate with predeposited eutectic solder. Mechanical coupling of the chip and the laminate is done via underfill encapsulant materials. As the chip size increases, the thermal mismatch between silicon and its organic carrier becomes greater. Adhesion becomes an important factor since the C4 joints fail quickly if delamination of the underfill from either chip or the solder mask interface occurs. Newly developed underfills have been studied to examine their properties, including interfacial adhesion strength, flow characteristics, void formation and cure kinetics. This paper will describe basic investigations into the properties of these underfills and also how these properties related to the overall development process. In addition, experiments were performed to determine the effects on adhesion degradation of flip chip assembly processes and materials such as IR reflow profile, flux quantity and residues. Surface treatment of both the chip and the laminate prior to encapsulation were studied to enhance underfill adhesion. Accelerated thermal cycling and highly accelerated stress testing (HAST) were conducted to compare various underfill properties and reliability responses  相似文献   

7.
底部填充工艺探讨   总被引:1,自引:0,他引:1  
底部填充工艺是倒装芯片封装过程中的一个必不可少而且很关键的组成部分,底部填充工艺的成败将直接影响到封装的可靠性。本文针对底部填充工艺中需考虑的多个方面,如分配模式、胶水体积计算、硬件选择等,阐述如何改进工艺,增强底部填充的自动生产的能力。  相似文献   

8.
倒装焊封装是通过将整个芯片有源面进行管脚阵列排布并预制焊料凸点,通过倒装焊工艺进行互连,与传统引线键合技术相比具有更高的组装密度及信号传输速率,是实现电子产品小型化、轻量化、多功能化的关键技术之一.对于小尺寸微节距的倒装焊芯片来说,焊后清洗的难度相对更大,因此清洗技术也是影响倒装焊工艺的重要因素.针对不同清洗方式及参数...  相似文献   

9.
成功的倒装芯片组装要求在焊剂应用、贴装设备、再流焊接、底部填充、密封剂密封和固化等方面予以特别的考虑.  相似文献   

10.
Electronic packaging designs are moving toward fewer levels of packaging to enable miniaturization and to increase performance of electronic products. One such package design is flip chip on board (FCOB). In this method, the chip is attached face down directly to a printed wiring board (PWB). Since the package is comprised of dissimilar materials, the mechanical integrity of the flip chip during assembly and operation becomes an issue due to the coefficient of thermal expansion (CTE) mismatch between the chip, PWB, and interconnect materials. To overcome this problem, a rigid encapsulant (underfill) is introduced between the chip and the substrate. This reduces the effective CTE mismatch and reduces the effective stresses experienced by the solder interconnects. The presence of the underfill significantly improves long term reliability. The underfill material, however, does introduce a high level of mechanical stress in the silicon die. The stress in the assembly is a function of the assembly process, the underfill material, and the underfill cure process. Therefore, selection and processing of underfill material is critical to achieving the desired performance and reliability. The effect of underfill material on the mechanical stress induced in a flip chip assembly during cure was presented in previous publications. This paper studies the effect of the cure parameters on a selected commercial underfill and correlates these properties with the stress induced in flip chip assemblies during processing  相似文献   

11.
This paper focuses on the FEM prediction of vertical die crack stresses in a Flip Chip configuration, induced in the major package assembly processes and subsequent thermo-mechanical loading. An extended Maxwell model is used to describe the time dependent inelastic behavior of the solder bumps. Two types of viscoelastic models, describing the mechanical properties of underfill resin during and after the curing process, are used. The die stresses caused by both the soldering and the underfill curing processes are obtained. These stresses are used as initial stress-state for the further modeling of subsequent thermal cycling. Using this methodology, the complete die stress evolution in a selected Flip Chip can be obtained, the physics of thermal stress induced vertical die cracks can be better understood and the possible die cracks can be reliably predicted.  相似文献   

12.
In this paper, the effects of phase change of Pb-free flip chip solders during board-level interconnect reflow are investigated using numerical technique. Most of the current Pb-free solder candidates are based on Sn and their melting temperatures are in the range of 220 $^{circ}$ C–240 $^{circ}$ C. Thus, Pb-free flip chip solders melt again during subsequent board-level interconnect (BGA) reflow cycle. Since solder volume expands as much as 4% during the phase change from solid to liquid, the volumetric expansion of solder in a predefined volume by chip, substrate, and underfill creates serious reliability issues. One issue is the shorting between neighboring flip chip interconnects by the interjected solder through underfill crack or delaminated interfaces. The authors have observed the interjection of molten solder and the interfacial failure of underfill during solder reflow process. In this paper, a flip chip package is modeled to quantify the effect of the volumetric expansion of Pb-free solder. Three possible cases are investigated. One is without existence of micro crack and the other two are with the interfacial crack between chip and underfill and the crack through the underfill. The strain energy release rate around the crack tip calculated by the modified crack closure integral method is compared with interfacial fracture toughness. Parametric studies are carried out by changing material properties of underfill and interconnect pitch. Also, the effects of solder interconnect geometry and crack length are explored. For the case with interfacial crack, the configuration of a large bulge with small pitch is preferred for the board-level interconnect, whereas a large pitch is preferred for cracks in the mid plane of the underfill.   相似文献   

13.
This paper presents a new package design for multichip modules. The developed package has a flip-chip-on-chip structure. Four chips [simulating dynamic random access memory (DRAM) chips for demonstration purpose] are assembled on a silicon chip carrier with eutectic solder joints. The I/Os of the four chips are fanned-in on the silicon chip carrier to form an area array with larger solder balls. A through-silicon via (TSV) hole is made at the center of the silicon chip carrier for optional underfill dispensing. The whole multichip module is mounted on the printed circuit board by the standard surface mount reflow process. After the board level assembly and X-ray inspection, the underfill process is applied to some selected specimens for comparative study purpose. The underfill material is dispensed through the center TSV hole on the silicon chip carrier to encapsulate the solder joints and the four smaller chips. Subsequently, scanning acoustic microscopy (SAM) is performed to inspect the quality of underfill. After the board-level assembly, all specimens are subject to the accelerated temperature cycling (ATC) test. During the ATC test, the electrical resistance of all specimens is monitored. The experimental results show that the packages without underfill encapsulation may fail in less than 100 thermal cycles while those with underfill can last for more than 1200 cycles. From the dye ink analysis and the cross-section inspection, it is identified that the packages without underfill have failure in the silicon chip carrier, instead of solder joints. The features and merits of the present package design are discussed in details in this paper.  相似文献   

14.
A flip chip package was assembled by using 6-layer laminated polyimide coreless substrate, eutectic Sn37Pb solder bump, two kinds of underfill materials and Sn3.0Ag0.5Cu solder balls. Regarding to the yield, the peripheral solder joints were often found not to connect with the substrate due to the warpage at high temperature, modification of reflow profile was benefit to improve this issue. All the samples passed the moisture sensitive level test with a peak temperature of 260 °C and no delamination at the interface of underfill and substrate was found. In order to know the reliability of coreless flip chip package, five test items including temperature cycle test (TCT), thermal shock test (TST), highly accelerated stress test (HAST), high temperature storage test (HTST) and thermal humidity storage test (THST) were done. Both of the two underfill materials could make the samples pass the HTST and THST, however, in the case of TCT, TST and HAST, the reliability of coreless flip chip package was dominated by underfill material. A higher Young’s modules of underfill, the more die crack failures were found. Choosing a correct underfill material was the key factor for volume production of coreless flip chip package.  相似文献   

15.
小型化和多功能化是SAW器件发展的主要动力。文章回顾了SAW器件封装的发展历史,介绍了金属封装、塑料封装、SMD封装各自的特点,详述了芯片倒装技术及芯片尺寸SAW封装(Chip Sized SAW Package,CSSP)技术,将通用芯片倒装技术(Flip Chip Bonding,FCB)和SAW封装的特点结合,使封装尺寸减小到极限。然后对今后的复合封装进行了展望。  相似文献   

16.
The flip chip-on-organic-substrate packaging technology utilizes a particulate reinforced epoxy as the underfill (UF) to adhere the chip to the package or board, Although the use of underfill encapsulation leads to improved reliability of flip-chip solder interconnections, delamination at various interfaces becomes a major concern for assembly yield loss and package reliability. In spite of their importance, the adhesion and fracture behaviors of the underfill interfaces have not been investigated until recently. Considerable controversy exists over the effects of underfill formulation and the adhesion and toughening mechanisms of the interfaces. The present work focuses on investigating the effects of several key variables on the interface adhesion strengths for UF/chip and UF/organic substrate systems. These variables are underfill organosilane content, filler particle content, rubber particle content, surface morphology and chemistry of the chip and organic substrates. The approach of this study is to measure the effect of these variables on the interfacial fracture energy using the double-cantilever-beam (DCB) techniques. The results demonstrate that the underfill interfacial adhesion and fracture characteristics are controlled by several distinct but competing mechanisms, such as formation of primary bonds, crack-pinning by glass fillers, debonding of glass filler from epoxy matrix (defect formation), and cavitation and shearing induced by rubber particles. Fundamental understanding of the interfacial adhesion and toughening mechanisms can provide guidance for developing new processes and materials to enhance interfacial adhesion and reliability  相似文献   

17.
The number of thermal cycles, the temperature range, and the time of dwell used for qualifying a microelectronic package should be based on the type of application the package is intended for. However, in the absence of specific guidelines, the industrial practice is to subject the devices to military-standard qualification tests without adequate consideration for the application the devices are intended for. This work aims at developing temperature cycling guidelines for packages used in implantable medical devices and automotive applications taking into consideration the thermal history associated with the field conditions. Numerical models have been developed that take the time- and temperature-dependent behavior of the solder joints and the viscoelastic behavior of the underfill besides the temperature-dependent orthotropic properties of the substrate for a flip-chip on board (FCOB) assembly and a flip chip chip-scale package (FCCSP) on organic board assembly. The models account for solder reflow process, underfill cure process, and burn-in testing of the devices. Qualification temperature cycling guidelines have been developed for implantable devices based on the information collected in terms of shipping, EM sterilization, and implantation temperature profiles, and for the automotive devices based on the representative field conditions  相似文献   

18.
A new defect in which a chip "floats" over the board surface after chip placement is appearing in the low-cost, high-throughput flip chip on board (FCOB) assembly that is based on no-flow underfill. This defect has the potential to significantly lower process yield when process variables are not properly controlled. In fact, it was found that much of the yield loss observed post reflow is attributable to "chip floating." A process model has been developed that will allow an understanding of the underlying physics of the floating phenomena and identification of process variables so that this process defect can be eliminated. The critical process variables include chip placement speed, chip placement force, dwell time, deposited underfill mass and underfill material properties such as viscosity, density, surface tension, wetting speed on the board, etc. A test chip and board was specially designed so that chip floating over the board can be easily detected. To validate the model, the effects of the critical process variables on chip floating were investigated by a series of experiments, and the results were compared to the theoretical model's predictions.  相似文献   

19.
Wafer level packages (WLPs) have demonstrated a very clear cost-advantage vs traditional wire-bond technologies, especially for small components that have a high number of dice and I/O per wafer. Ultra CSP® is a WLP developed by the Kulicke & Soffa Flip Chip Division (formally Flip Chip Technologies). Typical products utilizing the Ultra chip scale package (CSP) have 5×5 or less area arrays at 0.5 mm pitch. This relatively small array has been limited by the inherent solder joint reliability of WLPs. A much larger subset of higher I/O IC’s could benefit from WLPs provided that standard reliability requirements are achieved without the use of underfill.A new polymer reinforcement technology, “Polymer Collar WLP™”, has been developed by K&S Flip Chip Division. Polymer Collar WLP utilizes a polymer reinforcement structure surrounding the solder joint and it has demonstrated more than 50% increase in solder joint life in thermal cycling tests. The most attractive feature of the Polymer Collar WLP process is its simplicity. A simple replacement of the standard solder flux with Polymer Collar material during the solder attach process is all that is required. This simplicity makes Polymer Collar the most cost-effective solution for adding a polymer reinforcement structure to the solder joint. Other methods in use today require additional complex and costly manufacturing steps.This Polymer Collar WLP is expected to widen the WLP market to include larger arrays where the Ultra CSP did not have suitable solder joint reliability.  相似文献   

20.
Non-conductive adhesives (NCA), widely used in display packaging and fine pitch flip chip packaging technology, have been recommended as one of the most suitable interconnection materials for flip-chip chip size packages (CSPs) due to the advantages such as easier processing, good electrical performance, lower cost, and low temperature processing. Flip chip assembly using modified NCA materials with material property optimization such as CTEs and modulus by loading optimized content of nonconductive fillers for the good electrical, mechanical and reliability characteristics, can enable wide application of NCA materials for fine pitch first level interconnection in the flip chip CSP applications. In this paper, we have developed film type NCA materials for flip chip assembly on organic substrates. NCAs are generally mixture of epoxy polymer resin without any fillers, and have high CTE values un-like conventional underfill materials used to enhance thermal cycling reliability of solder flip chip assembly on organic boards. In order to reduce thermal and mechanical stress and strain induced by CTE mismatch between a chip and organic substrate, the CTE of NCAs was optimized by filler content. The flip chip CSP assembly using modified NCA showed high reliability in various environmental tests, such as thermal cycling test (-55/spl deg/C/+160/spl deg/C, 1000 cycle), high temperature humidity test (85/spl deg/C/85%RH, 1000 h) and high temperature storage test (125/spl deg/C, dry condition). The material properties of NCA such as the curing profile, the thermal expansion, the storage modulus and adhesion were also investigated as a function of filler content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号