首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since porous materials often function as adsorbents, this study chose to investigate the adsorption of heavy metals by geopolymers. The geopolymer was made by condensing a mixture of metakaolin and alkali solution at a fixed ratio at room temperature and then pre-crashed to a fixed-radius size. This paper examined the adsorption efficiency of the geopolymer for different heavy metals (i.e., Pb2+, Cu2+, Cr3+, and Cd2+) in aqueous solutions under discrete experimental parameters. The experimental results verified that the geopolymer could adsorb heavy metals. Of the metals tested, optimal adsorption with the implementation of the geopolymer occurred with Pb2+. The data fit both the pseudo-second-order and the Langmuir equations. This discovery may facilitate the development of optimized procedures for wastewater treatment, thus providing an alternative solution to environmental damages caused by heavy metal pollutants.  相似文献   

2.
Geopolymer (GP) composites show great potential as a replacement for ordinary Portland cement (OPC) in construction material, extrusion-based, and additive manufacturing. The rheological properties of highly viscous and reinforced systems have not yet been well studied, due to limitations in the current state of the art rheometers and viscometers, such as size and torque limits. In this study, the basic rheological properties of highly reinforced, geopolymer composites with potential for 3D printing are innovatively investigated with “squeeze flow” and “flow table” tests commonly used in civil engineering. Squeeze-flow rates of 0.1, 1.0, and 3.0 mm/s were assessed with varying sand weight percentages or basalt fiber lengths and compared to a conventional OPC mixture to differentiate the flow properties and deformation resistance of both materials. It is shown that the deformation resistance as a result of jamming increases with increasing solid reinforcement percentages, but that the overall effect of fiber size is somewhat inconclusive. In addition, the effect of squeeze-flow rate exhibits an increase in load required to initiate flow at lower squeezing rates, but, upon reaching a certain ratio of solids to liquid in the matrix, the results become variable.  相似文献   

3.
《Ceramics International》2015,41(6):7872-7880
This paper reports the synthesis and characterization of a microporous geopolymer body based on metakaolin. Two kaolinites were used as the starting materials in conjunction with sodium silicate and sodium hydroxide and three sizes of polylactic acid (PLA) fibers (12, 20 and 29 µm diameter) were used as the pore-forming media. The microporous bodies were formed from geopolymer pastes of optimized composition by extrusion, which yielded bodies with reasonably well-aligned pore-forming fibers which were decomposed by the alkaline conditions during curing and drying of the bodies. XRD, FTIR, 27Al MAS NMR, and SEM were used to characterize the chemistry and microstructure of the porous products and their compressive strengths were also measured. The molar composition SiO2/Al2O3=4 was found to give the best geopolymer characteristics, while the optimal ratio Na2O/Al2O3 which affected the leachability of the PLA fibers and thus the size of the resulting pores, was optimized in the range 1.5–1.75 depending on the kaolinite. Water permeability measurements indicate that the use of PLA fibers as pore-formers significantly increases the permeability of the samples, while the maximum pore size of the porous bodies, determined by bubble point measurements, is related to the size of the particulate matter that could be retained, and indicates that their performance could be tailored for particular filtering applications by adjusting their synthesis parameters.  相似文献   

4.
A method is presented to fabricate metakaolin-based geopolymers that are structurally and mechanically stable up to 600°C. The chemical environment of the geopolymers is characterized using thermogravimetric analysis and Fourier-transform infrared spectroscopy. Residual free water turned into steam and caused damage to the geopolymer when exposed to elevated temperatures. The curing temperature was increased from 80 to 120°C to remove water during the curing process. A correlation was drawn between the amount of Si-O-Al linkage formed and the position of fingerprint peaks in infrared spectra, providing a tool to evaluate the level of geopolymerization. Flexural and tensile properties of geopolymers fabricated using the optimized method were measured for no heat treatment and for exposure to elevated temperatures of 200, 400, and 600°C. The flexural strength was measured to be 10.80 ± 2.99 MPa at room temperature, 10.36 ± 0.64 MPa at 400°C, and 8.04 ± 1.60 MPa at 600°C. The flexural modulus is reported to be 13.09 ± 3.40 GPa at room temperature and 11.03 ± 0.53 GPa at 600°C. The flexural toughness decreased with increasing temperature. The tensile properties of the geopolymer were measured with direct tensile tests paired with an extensometer. The tensile strength decreased from 4.16 ± 2.08 MPa at room temperature to 3.13 ± 0.97 MPa at 400°C, and 2.75 ± 0.86 MPa at 600°C. The Young's modulus decreased from 45.38 ± 30.30 GPa at room temperature to 26.88 ± 6.65 GPa at 600°C. Both flexural and tensile tests have shown that the metakaolin-based geopolymers cured at 120°C is mechanically stable at temperatures up to 600°C.  相似文献   

5.
6.
《Ceramics International》2022,48(10):14173-14181
In this study, metakaolin was partially replaced with mineral micropowder to prepare a mineral-micropowder/metakaolin-based geopolymer was prepared under alkali activation, and the compressive and flexural strengths of various geopolymer specimens were determined. Geopolymer reaction kinetics were examined using the Johnson-Mehl-Avrami-Kolmogrov model, and the effects of the mineral-micropowder content on the properties and structure of the metakaolin-based geopolymer were investigated. Results revealed that micropowder addition significantly influenced the mechanical properties, microstructure, and reaction heat of the geopolymer. At a powder content of 30 wt%, the polymer exhibited superior mechanical properties; furthermore, the compressive and flexural strengths of the specimens cured for 28 d were 58.3 MPa and 12.6 MPa, which were 24.1% and 40% higher than those of the control group, respectively. Meanwhile, the geopolymer setting time was significantly reduced because the presence of calcium in mineral micropowder promoted the geopolymerisation reaction. Therefore, the formation of a multi-gel phase considerably enhanced the geopolymer structure.  相似文献   

7.
This work presents a novel experimental study on the use of auxetic fabrics as the main reinforcement in geopolymer composites, aiming at higher energy dissipation in impact demanding applications. For this, a potassium-based geopolymer was reinforced with an auxetic fabric consisting of basalt fiber fillings positioned between helical auxetic yarns (HAY) made of a thermoplastic polyester core, and a stiffer liquid-crystal polymer wrap, which dispersed the load demands into several single elements having different capabilities. The composites were investigated under quasi-static flexural and tensile loadings, in both longitudinal and transverse directions. The latter showed increased mechanical strengths, up to 26 MPa in tension, and 12.8 MPa in flexural strength. Each fiber portion was tested in tension separately, reaching flexible (core) and stiffer (wrap and basalt) responses, whereas HAYs displayed combined performances due to a suitable auxeticity effect, that is, a negative Poisson's ratio. The pullout investigation justified the cracking and delamination of the composites, due to its cyclic lateral area modification, which created a load demand much higher than what the brittle geopolymer can sustain in this type of solicitation. Thermogravimetric analyses helped to predict the use of such configurations under thermal exposure, pointing out that the geopolymer material could be a suitable thermal barrier to prevent sudden degradation of the fabric under these conditions.  相似文献   

8.
为提高偏高岭土基土聚水泥的力学性能,在偏高岭土中加入不同掺量(质量分数10%~50%)的矿渣,分析其对土聚水泥抗压强度的影响,并利用压汞仪和扫描电镜对80℃蒸养3 d的土聚水泥试样进行孔结构和断面形貌分析.实验结果表明:随着矿渣掺量的增加,土聚水泥的抗压强度显著提高,孔隙率呈线性减小,孔径分布逐步向微孔方向移动.当矿渣掺量为50%时,80℃蒸养3 d和7 d后抗压强度分别达到73.4和74.4MPa,3 d龄期试块的孔隙率仅为4.46%,孔径尺寸小于20 nm.微观结构分析表明,矿渣的加入使土聚水泥结构更加致密,有利于土聚水泥抗压强度的提高.  相似文献   

9.
Geopolymer foams (GPFs) are considered potential candidates for the highly porous ceramics owing to their high porosity and simple synthesis. In this study, bubble behaviors during different phases of the foaming process and their effects on the pore structure of molded GPFs were examined. The foaming reaction characteristics in a foaming system containing H2O2 were adjusted based on variables, such as catalyst content, temperature, activator-to-precursor ratio, and surfactant content. The viscosity of the slurry was also measured under different experimental conditions. Bubble behaviors were determined by characterizing the change in the gas volume in the slurry and the pore structure of the molded GPFs. Different pore structures will be realized by adjusting the relationship between the extrusion effect and liquid film properties in the various foaming phases.  相似文献   

10.
Porous potassium based geopolymers with a mutli-scale porosity were synthesized. Silica fume is introduced as an additive to the geopolymer formulation. The free silicon contained inside this silica fume is oxidized in alkaline solution, releasing molecular hydrogen which generates the porosity. Previous work has shown how the porosity can be controlled with temperature, repeated temperature cycles and the mass introduced. Using this protocol, homogeneous foams were made and then studied with scanning electron microscopy. In particular the foam expansion has been followed with time in relation to the microstructure. The thermal conductivity values of the foams were evaluated using a fluxmeter method. The effective thermal conductivities are comprised between 0.12 and 0.35 W m?1 K?1 for apparent densities ranging from 0.40 to 0.85 g cm?3. The corresponding calculated pore volume fractions are in the range of 65–85%. The interest of this material is that it combines the advantages of low bulk density and insulating properties with the characteristics of a geopolymer skeleton. Literature reports a very good fire and acid/base resistance, a low cost of production and the possibility of recycling industrial waste in the form of silica fume.  相似文献   

11.
In order to study the pore solution, the release and binding of alkalis in a hydrating cement system have been studied. First, the binding factors for sodium and potassium as determined by Taylor [Adv. Cem. Res. 1 (1987) 5_16] and the corresponding distribution ratios as determined by Hong and Glasser [Cem. Concr. Res. 29 (1999) 1893_1903; Cem. Concr. Res. in press] are related to each other. It follows that the sorption of sodium is practically identical, whereas for potassium Taylor [Adv. Cem. Res. 1 (1987) 5_16] predicts a substantial lower degree of sorption. The concept of alkali release, pore solution decrease and sorption by formed C_S_H, is incorporated in the NIST hydration model (CEMHYD3D). Subsequently, the model is compared with OPC hydration experiments reported by Larbi et al. [Cem. Concr. Res. 20 (1990) 506_516]. Good agreement is obtained when the distribution ratios of Hong and Glasser [Cem. Concr. Res. 29 (1999) 1893_1903] are applied. The results suggest that C_S_H is the only binder of alkalis in hydrating OPC.  相似文献   

12.
Reinforcing steel passivation in mortar and pore solution   总被引:1,自引:0,他引:1  
Under field conditions, steel is embedded in concrete for a long period of time before chlorides penetrate. In studying the corrosion behaviour of steel in concrete, mortar or in simulated pore solution, it is essential to allow enough time for the steel to create a passive layer which is the subject of this study. This time is given to steel in chloride free concrete, naturally; while it should be provided to steel in synthetic pore solution, before adding chloride to the solution. For determining this time, samples were made with steel with different surface conditions: as-received with mill scales and sand-blasted. One set of steel bars (as-received and sand-blasted) were embedded in mortar and one set were immersed in synthetic pore solution. Corrosion of each steel bar was monitored every hour by LPR technique for total time of 300 h. Also, half-cell potential of steel bars was measured during that time. Results show that steel needs to be kept at least three days in synthetic pore solution and seven days in mortar to be passivated.  相似文献   

13.
The pore solution phase of carbonated cement pastes   总被引:1,自引:0,他引:1  
Samples of hydrated cement pastes were exposed to atmospheres with various carbon dioxide concentrations at relative humidities controlled by different saturated salt solutions. When carbonated throughout their thickness, as indicated by the phenolphthalein test, they were resaturated with water and subjected to pore solution expression and analysis. The effects of the various carbonating environments on the pore solution composition and on aspects of the pore structure and mineralogy of the carbonated products are reported. Implications regarding the likely effects of different accelerated carbonation regimes on the corrosion behaviour of steel in concrete are discussed. In particular, it is shown that the use of saturated sodium nitrite solution to control the relative humidity of atmospheres with high concentrations of carbon dioxide may cause an evolution of gaseous oxides of nitrogen, which can result in the contamination of the pore solution with nitrite and nitrate salts.  相似文献   

14.
Cement pastes with a water-cement ratio of 0.6 were prepared using three ordinary portland cements with C3A contents of 2.43, 7.59 and 14%. Three levels of chlorides 0.3, 0.6 and 1.2% by weight of cement, derived from sodium chloride, were added through mix water. The pastes were allowed to cure in sealed containers at 20 and 70°C for 180 days and then subjected to pore solution extraction. The expressed pore solutions were analyzed for chloride and hydroxyl ion concentrations. Results show that increase in temperature from 20 to 70°C increased unbound chlorides and decreased hydroxyl ion concentration of pore solutions for all the three cements. The simultaneous increase in unbound chlorides and decrease in hydroxyl ion concentration drastically increased Cl/OH ratio of the pore solution, thereby indicating an increase in corrosion risk. This adverse effect of increase in the Cl/OH ratio of the pore solution with increase in temperature is higher in the high 14% C3A cement than in the low C3A cements, and is also higher for the low 0.3% chloride treatment level than the higher chloride inductions. Increase in temperature is also expected to cause an increase in ionic diffusion to steel embedded in concrete as well as in the rate of corrosion reaction. All these factors tend to increase corrosion risk of steel reinforcement in concrete with an increase in temperature.  相似文献   

15.
Experience has shown that the pore solution alkalinity of resaturated concrete was lower than expected. Laboratory-concrete specimens were made with reactive aggregates, stored over water at 38 °C, and then broken into two pieces. The pore solution of half-specimens was extracted by high-pressure squeezing. The other half-specimens were dried at ambient air and rewetted in humid air to their initial weight. The pore solution was then extracted and compared with the composition results of the first extraction. The results obtained from this investigation confirmed that a certain part of the alkali ions in pore solution that had become fixed by drying are not subsequently extracted after rewetting. The alkali concentration [Na+K] was reduced from 34% to 61% by the drying and rewetting treatments.  相似文献   

16.
用模数m=1.0、1.2、1.4和1.6的4种硅酸钠溶液作激发剂制备偏高岭土基无机聚合物,通过强度测试、红外分析(IR)、X线衍射(XRD)和扫描电镜(SEM)等方法考察激发剂模数对无机聚合物力学性能和微观结构的影响。结果表明:模数在1.0~1.6变化时,激发剂中硅氧四面体呈低聚合态;随养护时间延长,无机聚合物抗压强度和抗折强度提高,m=1.2的无机聚合物28 d抗压强度最高(74.6 MPa),抗折强度为11.2 MPa;4种无机聚合物主体相均呈非晶态,结构上由凝胶体和残留原料颗粒组成,其中,m=1.2时无机聚合物的显微结构最平整。  相似文献   

17.
Geopolymer foam has emerged as a promising inorganic porous material in the last decade. Despite of the numerous advantages, there are some pending issues to be addressed, on top of that is the low compressive strength. To overcome this, this study synthesizes a high-strength geopolymer foam by the partial substitution of fly ash (FA) with ground granulated blast furnace slag and carries out an intensive investigation into its microstructure, pore properties, thermal conductivity as well as compressive behavior. The microstructure is firstly analyzed by X-ray diffraction and Fourier transform infrared spectroscopy techniques. The pore characteristics are also scrutinized, including pore size distribution, total porosity and water absorption. Then, the thermal conductivity is investigated and the applicability of basic effective thermal conductivity models to characterize the relationship with total porosity is evaluated. Afterward, the compressive strength together with the softening coefficient is examined, and the relationship with total porosity is also studied. Finally, comparisons between the proposed geopolymer foam and other FA-based geopolymer foams in the literature are performed. The results show that the proposed geopolymer foam possesses not only a comparable thermal conductivity but also a far superior compressive strength, which sheds light on the widespread applications in thermal insulation.  相似文献   

18.
Environmental scanning electron microscopy (ESEM) and complementary methods were employed to study the time dependent film formation of a latex dispersion in water and cement pore solution. First, a model carboxylated styrene/n-butyl acrylate latex dispersion possessing a minimum film forming temperature (MFFT) of 18 °C was synthesized in aqueous media via emulsion polymerization. Its film forming property was at a temperature of 40 °C, studied under an ESEM. The analysis revealed that upon removal of water, film formation occurs as a result of particle packing, particle deformation and finally particle coalescence. Film formation is significantly retarded when the latex dispersion is present in cement pore solution. This effect can be ascribed to adsorption of Ca2+ ions onto the surface of the anionic latex particles and to interfacial secondary phases. This layer of adsorbed Ca2+ ions hinders interdiffusion of the macromolecules and subsequent film formation of the latex polymer.  相似文献   

19.
The promotion of expansion of mortars containing a reactive aggregate in 1N NaCl solution at 38 °C was attributed to a rise of OH ion concentration in the pore solution in the mortars. However, it is ambiguous whether the promotion of expansion of mortars in sea water at a room temperature can be explained in the same way as in NaCl solution at an elevated temperature. This study aims at pursuing the expansion behavior of mortars containing a reactive aggregate relating it to their pore solution composition and the extent of alkalisilica reaction occurring within reactive grains. The alkali-silica reaction in mortars in sea water and 0.51N NaCl solution at 20 °C appears to progress differently from that in mortars in 1N NaCl solution at an elevated temperature of 38 °C. The promotion of expansion of mortars in sea water at 20 °C was found to be responsible for an effect of Cl ions on the alkali-silica reaction at early stages of immersion. Only when OH ion concentration in the pore solution was relatively high, NaCl and sea water could accelerate the alkali-silica reaction in mortars at 20 °C.  相似文献   

20.
The mechanical properties and microstructure of geopolymer are affected by the molar ratio of SiO2/Al2O3. Meanwhile, organic polymer has the effect of improving the toughness of geopolymer, which depends on the SiO2/Al2O3 ratio of geopolymer inevitably. Therefore, it is important to investigate the effect of the organic polymer on the mechanical properties and microstructure of geopolymer with varying SiO2/Al2O3 ratio for using organic polymer to modify geopolymer. In this work, the SiO2/Al2O3 ratios of metakaolin-based geopolymers are adjusted to 2.0, 2.5, 3.0, 3.5 and 4.0 by adding silica fume and β-Al2O3, with Na2O/SiO2, H2O/SiO2 being maintained at 0.2, 4.0, respectively. The geopolymers with each SiO2/Al2O3 ratios are modified by addition of 0, 0.4, 0.8, 1.2 and 1.6?wt% of sodium polyacrylate (PAAS).The mechanical properties of these samples are measured and the rate of change is used to characterize the effect of PAAS on the metakalin-based geopolymers. The mechanism is also shown by 29Si NMR, XPS and FTIR. The results show that the effects of polymer on the mechanical properties of metakaolin-based geopolymer are affected by SiO2/Al2O3 ratio and the effect becomes less obvious with SiO2/Al2O3 ratio increasing from 2.0 to 4.0. Incorporation of PAAS can reduce the degree of polymerization of [SiO]4 or [AlO]4 in geopolymer and form the Si?O?C bond, which are two main reasons for polymer improving the toughness of geopolymer. But these effects decrease when the SiO2/Al2O3 ratio of geopolymer increases from 2.0 to 4.0, which is corresponding to the effect on the mechanical properties. The toughening effect of organic polymer on geopolymer depends on the SiO2/Al2O3 ratio of geopolymer, and only the geopolymer with lower SiO2/Al2O3 ratio (no more than 2.5 in this work) can be significantly toughening modified by organic polymer. Therefore, it is necessary to consider the SiO2/Al2O3 ratio of the geopolymer when geopolymer modified by organic polymer is designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号