首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condition monitoring using temperature sensitive electrical parameters (TSEPs) is widely recognized as an enabler for health management of power modules. The on-state resistance/forward voltage of MOSFETs, IGBTs and diodes has already been identified as TSEPs by several researchers. However, for SiC MOSFETs, the temperature sensitivity of on-state voltage/resistance varies depending on the device and is generally not as high as in silicon devices. Recently the turn-on current switching rate has been identified as a TSEP in SiC MOSFETs, but its temperature sensitivity was shown to be significantly affected by the gate resistance. Hence, an important consideration regarding the use of TSEPs for health monitoring is how the gate driver can be used for improving the temperature sensitivity of determined electrical parameters and implementing more effective condition monitoring strategies. This paper characterizes the impact of the gate driver voltage on the temperature sensitivity of the on-state resistance and current switching rate of SiC power MOSFETs. It is shown that the temperature sensitivity of the switching rate in SiC MOSFETs increases if the devices are driven at lower gate voltages. It is also shown, that depending on the SiC MOSFET technology, reducing the gate drive voltage can increase the temperature sensitivity of the on-state resistance. Hence, using an intelligent gate driver with the capability of customizing occasional switching pulses for junction temperature sensing using TSEPs, it would be possible to implement condition monitoring more effectively for SiC power devices.  相似文献   

2.
In recent years, SiC has received increased attention because of its potential for a wide variety of high temperature, high power, high frequency, and/or radiation hardened applications under which conventional semiconductors cannot adequately perform. For semiconductor devices designed to operate in these harsh conditions, SiC offers an unmatched combination of electronic and physical properties. The availability of SiC wafers on a commercial basis has led to the demonstration of many types of metal-oxide semiconductor (MOS)-gated devices that exploit its unique properties. To which extent the potential of SiC power MOSFET can be utilized is a question of appropriate SiC polytype, device structure, MOS interface quality and maturity of the technology. This paper reviews the present status of the SiC power MOSFETs technology that is approaching commercialization. Emphasis is placed upon the impact of SiO2–SiC interface quality on the performance of SiC MOSFETs.  相似文献   

3.
Different switching frequencies are required when SiC metal-oxide-semiconductor field-effect transistors(MOSFETs)are switching in a space environment.In this study,the total ionizing dose(TID)responses of SiC power MOSFETs are investig-ated under different switching frequencies from 1 kHz to 10 MHz.A significant shift was observed in the threshold voltage as the frequency increased,which resulted in premature failure of the drain-source breakdown voltage and drain-source leakage current.The degradation is attributed to the high activation and low recovery rates of traps at high frequencies.The results of this study suggest that a targeted TID irradiation test evaluation method can be developed according to the actual switching fre-quency of SiC power MOSFETs.  相似文献   

4.
Characterization, Modeling, and Application of 10-kV SiC MOSFET   总被引:4,自引:0,他引:4  
Ten-kilovolt SiC MOSFETs are currently under development by a number of organizations in the United States, with the aim of enabling their applications in high-voltage high-frequency power conversions. The aim of this paper is to obtain the key device characteristics of SiC MOSFETs so that their realistic application prospect can be provided. In particular, the emphasis is on obtaining their losses in various operation conditions from the extensive characterization study and a proposed behavioral SPICE model. Using the validated MOSFET SPICE model, a 20-kHz 370-W dc/dc boost converter based on a 10-kV 4H-SiC DMOSFET and diodes is designed and experimentally demonstrated. In the steady state of the boost converter, the total power loss in the 15.45- $hbox{mm}^{2}$ SiC MOSFET is 23.6 W for the input power of 428 W. The characterization study of the experimental SiC MOSFET and the experiment of the SiC MOSFET-based boost converter indicate that the turn-on losses of SiC MOSFETs are the dominant factors in determining their maximum operation frequency in hard-switched circuits with conventional thermal management. Replacing a 10-kV SiC PiN diode with a 10-kV SiC JBS diode as a boost diode and using a small external gate resistor, the turn-on loss of the SiC MOSFET can be reduced, and the 10-kV 5-A SiC MOSFET-based boost converter is predicted to be capable of a 20-kHz operation with a 5-kV dc output voltage and a 1.25-kW output power by the PSpice simulation with the MOSFET model. The low losses and fast switching speed of 10-kV SiC MOSFETs shown in the characterization study and the preliminary demonstration of the boost converter make them attractive in high-frequency high-voltage power-conversion applications.   相似文献   

5.
由于硅材料本身的限制,传统硅电力电子器件性能已经接近其极限,碳化硅(SiC)器件的高功率、高效率、耐高温、抗辐照等优势逐渐突显,成为电力电子器件一个新的发展方向.综述了SiC材料、SiC电力电子器件、SiC模块及关键工艺的研究现状,重点从材料、器件结构、制备工艺等方面阐述了SiC二极管、金属氧化物半导体场效应晶体管(MOSFET)、结晶型场效应晶体管(JFET)、双极结型晶体管(BJT)、绝缘栅双极晶体管(IGBT)及模块的研究进展.概述了SiC材料、SiC电力电子器件及模块的商品化情况,最后对SiC材料及器件的发展趋势进行了展望.  相似文献   

6.
The authors have made the first 4H-SiC RF power MOSFETs with cutoff frequency up to 12 GHz, delivering RF power of 1.9 W/mm at 3 GHz. The transistors withstand 200 V drain voltage, are normally off, and show no gate lag, which is often encountered in SiC MESFETs. The measured devices have a single drain finger and a double gate finger, and a total gate width of 0.8 mm. To their knowledge, this is the first time that power densities above 1 W/mm at 3 GHz are reported for SiC MOSFETs.  相似文献   

7.
Status and prospects for SiC power MOSFETs   总被引:4,自引:0,他引:4  
SiC electronic device technology has made rapid progress during the past decade. In this paper, we review the evolution of SiC power MOSFETs between 1992 and the present, discuss the current status of device development, identify the critical fabrication issues, and assess the prospects for continued progress and eventual commercialization  相似文献   

8.
Recent studies regarding MOSFETs on SiC reveal that 4H-SiC devices suffer from a low inversion layer mobility, while in 6H-SiC, despite a higher channel mobility the bulk mobility parallel to the c-axis is too low, making this polytype unattractive for power devices. This work presents experimental mobility data of MOSFETs fabricated on different polytypes as well as capacitance-voltage (C-V) measurements of corresponding n-type MOS structures which give evidence that the low inversion channel mobility in 4H-SiC is caused by a high density of SiC-SiO2 interface states close to the conduction band. These defects are believed to be inherent to all SiC polytypes and energetically pinned at around 2.9 eV above the valence band edge. Thus, for polytypes with band gaps smaller than 4H-SiC like 6H-SiC and 15R-SiC, the majority of these states will become resonant with the conduction band at room temperature or above, thus remarkably suppressing their negative effect on the channel mobility. In order to realize high performance power MOSFETs the results reveal that 15R-SiC is the best candidate among all currently accessible SiC polytypes  相似文献   

9.
The aim of this paper is to provide an extensive overview about the state-of-art commercially available SiC power MOSFET, focusing on their short-circuit ruggedness. A detailed literature investigation has been carried out, in order to collect and understand the latest research contribution within this topic and create a survey of the present scenario of SiC MOSFETs reliability evaluation and failure mode analysis, pointing out the evolution and improvements as well as the future challenges in this promising device technology.  相似文献   

10.
There has been a rapid improvement in SiC materials and power devices during the last few years. However, the materials community has overlooked some critical issues, which may threaten the emergence of SiC power devices in the coming years. Some of these pressing materials and processing issues will be presented in this paper. The first issue deals with the possibility of process-induced bulk traps in SiC immediately under the SiC/SiO2 interface, which may be involved in the reduction of effective inversion layer electron mobility in SiC metal–oxide–semiconductor field-effect transistor (MOSFETs). The second issue addresses the effect of recombination-induced stacking faults (SFs) in majority carrier devices such as MOSFETs, Schottky diodes, and junction field-effect transistors (JFETs). In the past it was assumed that the SFs only affect the bipolar devices such as PiN diodes and thyristors. However, most majority carrier devices have built-in p–n junction diodes, which can become forward biased during operation in a circuit. Thus, all high-voltage SiC devices are susceptible to this phenomenon.  相似文献   

11.
Evaluation of high-voltage 4H-SiC switching devices   总被引:1,自引:0,他引:1  
In this paper, the on-state and switching performance of 4H-SiC UMOSFETs, TIGBTs, BJTs, SIThs, and GTOs with voltage ratings from 1 to 10 kV are simulated at different temperatures. Comparison with silicon devices highlights the advantages of SiC technology. SiC BJTs suffer the same problem as Si BJTs, namely the degradation of current gain with increased voltage rating which makes them unsuitable for applications above 4 kV. SiC MOSFETs dominate applications below 4 kV for their attractive conduction performance and advantages such as ease of use. Above 3 kV, SiC MOSFETs are not as attractive as SiC bipolar devices because of their high on-state voltages. In the voltage range simulated, SiC IGBTs, SIThs, and GTOs have comparable current handling ability. Considering the GTOs slow switching speed and drive complexities, IGBTs and SIThs are a better choice in the voltage range 4-10 kV. Calculations based on conduction loss and switching loss indicate that SiC SIThs are superior to IGBTs except in high-temperature and high-frequency applications where IGBTs are better. The need to provide a large gate current during turnoff and turn-off failure caused by gate debiasing, decreases the attractiveness of the SITh  相似文献   

12.
VDMOS场效应晶体管的研究与进展   总被引:6,自引:0,他引:6       下载免费PDF全文
陈龙  沈克强   《电子器件》2006,29(1):290-295
介绍了新一代电力电子器件VDMOS的发展概况及工作原理,分析了其技术特点与优势,重点阐述了近年来国际上VDMOS在高压大电流及低压大电流方面所取得的理论及技术突破,通过不断改进的沟槽技术以及封装工艺提高了器件的整体性能,而Superjunction新结构、SiC新材料的采用突破了Si的高压应用理论极限。最后对未来的研究方向作了展望。  相似文献   

13.
This article presents a comparative study between SiC MOSFETs and Si IGBTs regarding changes in their junction temperature in a PV inverter application. The estimation of these variations is made by introducing the current mission profiles extracted from a photovoltaic plant over one year into a calculation tool. The latter is based on a losses model and a thermal model including a coupling between them. The calculation of the losses in SiC MOSFETs in the 3rd quadrant is detailed. The results are the mission profiles of the junction temperature of semiconductors, which allow for determining and comparing the thermal constraints in SiC MOSFET and Si IGBT power modules.  相似文献   

14.
The impact of fundamental and technological parameters is considered for SiC power MOSFETs. The wide bandgap nature of SiC increases the surface electric field by 2× at inversion compared to silicon, placing an important role on surface roughness in reducing the field-effect mobility. The presence of interface-trapped charges also acts to reduce the channel mobility and increases the sensitivity of the threshold voltage to temperature. The high critical electric field of SiC increases the stored energy in the switch output capacitance by 10× compared to silicon. For hard-switched converters, it is important to design SiC MOSFETs with a high saturation current to enable high-speed turn-on transients required to discharge the integral drain-source capacitance.  相似文献   

15.
《Solid-state electronics》2004,48(10-11):1757-1762
Compact silicon carbide (SiC) power semiconductor device models for circuit simulation have been developed for power Schottky, merged-PiN-Schottky, PiN diodes, and MOSFETs. In these models, the static and dynamic performance of the power SiC devices requires specific attention to the low-doped, voltage blocking drift region; the channel transconductance in MOS devices; the relatively low-intrinsic carrier concentration; the incomplete ionization of dopants; and the temperature dependent material properties. The modeling techniques required to account for each of these characteristics are described.  相似文献   

16.
SiC power MOSFETs designed for blocking voltages of 10 kV and higher face the problem of high drift layer resistance that gives rise to a high internal power dissipation in the ON -state. For this reason, the ON-state current density must be severely restricted to keep the power dissipation below the package limit. We have designed, optimized, and fabricated high-voltage SiC p-channel doubly-implanted metal-oxide-semiconductor insulated gate bipolar transistors (IGBTs) on 20-kV blocking layers for use as the next generation of power switches. These IGBTs exhibit significant conductivity modulation in the drift layer, which reduces the ON-state resistance. Assuming a 300 W/cm2 power package limit, the maximum currents of the experimental IGBTs are 1.2x and 2.1x higher than the theoretical maximum current of a 20-kV MOSFET at room temperature and 177 degC, respectively.  相似文献   

17.
Silicon carbide (SiC) MOSFETs power modules are very attractive devices and are already available in the market. Nevertheless, despite technological progress, reliability remains an issue and reliability tests must be conducted to introduce more widely these devices into power systems. Because of trapping/de-trapping phenomena at the SiC/SiO2 interface that lead to the shift of threshold voltage, test protocols based on silicon components cannot be used as is, especially in high temperature conditions. Using high temperature SiC MOSFET power modules, we highlight the main experimental difficulties to perform power cycling tests. These reversible physical mechanisms preclude the use of temperature sensitive parameters (TSEP) for junction temperature measurements, so we set up fiber optic temperature sensors for this purpose. Moreover, these degradation phenomena lead to difficulties in both controlling the test conditions and seeking for reliable aging indicator parameters. Finally, a power cycling test protocol at high temperature conditions is proposed for such devices.  相似文献   

18.
Improving the voltage, current, and switching capabilities of power electronics devices makes for more efficient control of power and energy. Interface with microprocessors for protection from unfriendly environments is also an asset. The author discusses the development of power electronic devices using MOSFETs, insulated gate transistors, and MOS controlled thyristors. The future of SiC based devices is also discussed  相似文献   

19.
SiC MOSFET是制作高速、低功耗开关功率器件的理想材料,然而,制作反型沟道迁移率较高的SiC MOSFET工艺尚未取得满意结果。通过在N0中高温退火可以显著地提高4H—SiC MOSFET的有效沟道迁移率;采用H2中退火制作的4H—SiC MOSFET阈值电压为3.1V,反型沟道迁移率高于100cm^2/Vs的栅压的安全工作区较宽。N20退火技术由于其的安全性而发展迅速并将取代N0。  相似文献   

20.
The electromagnetic compatibility (EMC) study is an indispensable step in the development cycle of power system modules. In power applications using normally off transistors, short-circuit mode can be recurrent during operation, especially when powering converters. In this paper, we present a study on the evolution of conducted interferences (in common and differential mode voltages) generated by a static converter after an aging test of silicon carbide (SiC) MOSFET transistors from the first generation of CREE subjected to repetitive short-circuit operations. This work presents an experimental investigation of the repetitive short-circuit aging effect of N Channel power SiC MOSFETs on the amplitude of resonances in the interference spectra after aging tests. Experimental results are presented and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号