首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The severity of injury from vehicle crash is a result of a complex interaction of factors related to drivers’ behavior, vehicle characteristics, road geometric and environmental conditions. Knowing to what extent each factor contributes to the severity of an injury is very important. The objective of the study was to assess factors that contribute to crash injury severity in Ethiopia. Data was collected from June 2012 to July 2013 on one of the main and busiest highway of Ethiopia, which extends from the capital Addis Ababa to Hawassa. During the study period a total of 819 road crashes was recorded and investigated by trained crash detectors. A generalized ordered logit/partial proportional odds model was used to examine factors that might influence the severity of crash injury. Model estimation result suggested that, alcohol use (Coef. = 0.5565; p-value = 0.017), falling asleep while driving (Coef. = 1.3102; p-value = 0.000), driving at night time in the absence of street light (Coef. = 0.3920; p-value = 0.033), rainfall (Coef. = 0.9164; p-value = 0.000) and being a minibus or vans (Coef. = 0.5065; p-value = 0.013) were found to be increased crash injury severity. On the other hand, speeding was identified to have varying coefficients for different injury levels, its highest effects on sever and fatal crashes. In this study risky driving behaviors (speeding, alcohol use and sleep/fatigue) were a powerful predictor of crash injury severity. Therefore, better driver licensing and road safety awareness campaign complimented with strict police enforcement can play a pivotal role to improve road safety. Further effort needed as well to monitor speed control strategies like; using the radar control and physical speed restraint measures (i.e., rumble strips).  相似文献   

2.
This paper presents statistical evidence showing how variations in the attributes of road users can lead to variations in the probabilities of sustaining different levels of injury in motor vehicle accidents. Data from New South Wales, Australia, is used to estimate two models of multiple choice which are reasonably commonplace in the econometrics literature: the ordered logit model and the ordered probit model. Our estimated parameters are significantly different from zero at small levels of significance and have signs which are consistent with our prior beliefs. As a benchmark for comparison, we consider the risks faced by a 33-year old male driver of a 10-year-old motor vehicle who is involved in a head-on collision while travelling at 42 kilometres per hour. We estimate that this benchmark victim will remain uninjured with a probability of almost zero, will require treatment from a medical officer with a probability of approximately 0.7, will be admitted to hospital with a probability of approximately 0.3, and will be killed with a probability of almost zero. We find that increases in the age of the victim and vehicle speed lead to slight increases in the probabilities of serious injury and death. Other factors which have a similar or greater effect on the probabilities of different types of injury include seating position, blood alcohol level, vehicle type, vehicle make and type of collision.  相似文献   

3.
Rural roads carry less than fifty percent of the traffic in the United States. However, more than half of the traffic accident fatalities occurred on rural roads. This research focuses on analyzing injury severities involving single-vehicle crashes on rural roads, utilizing a latent class logit (LCL) model. Similar to multinomial logit (MNL) models, the LCL model has the advantage of not restricting the coefficients of each explanatory variable in different severity functions to be the same, making it possible to identify the impacts of the same explanatory variable on different injury outcomes. In addition, its unique model structure allows the LCL model to better address issues pertinent to the independence from irrelevant alternatives (IIA) property. A MNL model is also included as the benchmark simply because of its popularity in injury severity modeling. The model fitting results of the MNL and LCL models are presented and discussed. Key injury severity impact factors are identified for rural single-vehicle crashes. Also, a comparison of the model fitting, analysis marginal effects, and prediction performance of the MNL and LCL models are conducted, suggesting that the LCL model may be another viable modeling alternative for crash-severity analysis.  相似文献   

4.
There is considerable debate on the appropriate discrete choice framework for examining injury severity. Researchers in the safety field have employed ordered and unordered frameworks for examining the various factors influencing injury severity. The objective of the current study is to investigate the performance of the ordered and unordered response frameworks at a fundamental level. Towards this end, we undertake a comparison of the alternative frameworks by estimating ordered and unordered response models using data generated through ordered, unordered data and a combination of ordered and unordered data generation processes. We also examine the influence of aggregate sample shares on the appropriateness of the modeling framework. Rather than be limited by the aggregate sample shares in an empirical dataset, simulation allows us to explore the influence of a broad spectrum of sample shares on the performance of ordered and unordered frameworks. We also extend the data generation process based analysis to under reported data and compare the performance of the ordered and unordered response frameworks. Finally, based on these simulation exercises, we provide a discussion of the merits of the different approaches. The results clearly highlight the emergence of the generalized ordered logit model as a true equivalent ordered response model to the multinomial logit model for ordinal discrete variables.  相似文献   

5.
This study explores the differences between urban and rural driver injuries (both passenger-vehicle and large-truck driver injuries) in accidents that involve large trucks (in excess of 10,000 pounds). Using 4 years of California accident data, and considering four driver-injury severity categories (no injury, complaint of pain, visible injury, and severe/fatal injury), a multinomial logit analysis of the data was conducted. Significant differences with respect to various risk factors including driver, vehicle, environmental, road geometry and traffic characteristics were found to exist between urban and rural models. For example, in rural accidents involving tractor-trailer combinations, the probability of drivers' injuries being severe/fatal increased about 26% relative to accidents involving single-unit trucks. In urban areas, this same probability increased nearly 700%. In accidents where alcohol or drug use was identified as being the primary cause of the accident, the probability of severe/fatal injury increased roughly 250% percent in rural areas and nearly 800% in urban areas. While many of the same variables were found to be significant in both rural and urban models (although often with quite different impact), there were 13 variables that significantly influenced driver-injury severity in rural but not urban areas, and 17 variables that significantly influenced driver-injury severity in urban but not rural areas. We speculate that the significant differences between rural and urban injury severities may be at least partially attributable to the different perceptual, cognitive and response demands placed on drivers in rural versus urban areas.  相似文献   

6.
The conventional methods for crash injury severity analyses include either treating the severity data as ordered (e.g. ordered logit/probit models) or non-ordered (e.g. multinomial models). The ordered models require the data to meet proportional odds assumption, according to which the predictors can only have the same effect on different levels of the dependent variable, which is often not the case with crash injury severities. On the other hand, non-ordered analyses completely ignore the inherent hierarchical nature of crash injury severities. Therefore, treating the crash severity data as either ordered or non-ordered results in violating some of the key principles. To address these concerns, this paper explores the application of a partial proportional odds (PPO) model to bridge the gap between ordered and non-ordered severity modeling frameworks. The PPO model allows the covariates that meet the proportional odds assumption to affect different crash severity levels with the same magnitude; whereas the covariates that do not meet the proportional odds assumption can have different effects on different severity levels. This study is based on a five-year (2008–2012) national pedestrian safety dataset for Switzerland. A comparison between the application of PPO models, ordered logit models, and multinomial logit models for pedestrian injury severity evaluation is also included here. The study shows that PPO models outperform the other models considered based on different evaluation criteria. Hence, it is a viable method for analyzing pedestrian crash injury severities.  相似文献   

7.
A retrospective cross-sectional study is conducted analysing 11,771 traffic accidents reported by the police between January 2008 and December 2013 which are classified into three injury severity categories: fatal, injury, and no injury. Based on this classification, a multinomial logit analysis is performed to determine the risk factors affecting the severity of traffic injuries. The estimation results reveal that the following factors increase the probability of fatal injuries: drivers over the age of 65; primary-educated drivers; single-vehicle accidents; accidents occurring on state routes, highways or provincial roads; and the presence of pedestrian crosswalks. The results also indicate that accidents involving cars or private vehicles or those occurring during the evening peak, under clear weather conditions, on local city streets or in the presence of traffic lights decrease the probability of fatal injuries. This study comprises the most comprehensive database ever created for a Turkish sample. This study is also the first attempt to use an unordered response model to determine risk factors influencing the severity of traffic injuries in Turkey.  相似文献   

8.
While the number of fatalities on Danish roads has decreased in the last 40 years, research has not investigated the contribution of legislation changes, enforcement measures, technological enhancements, infrastructural improvements and human factors to this reduction. In the context of a Danish car market with remarkably high registration tax that causes potential buyers to hold longer onto old cars, the relationship between technological enhancements of vehicles and severity of crashes requires particular attention.  相似文献   

9.
Identifying factors that affect crash injury severity and understanding how these factors affect injury severity is critical in planning and implementing highway safety improvement programs. Factors such as driver-related, traffic-related, environment-related and geometric design-related were considered when developing statistical models to predict the effects of these factors on the severity of injuries sustained from motor vehicle crashes at merging and diverging locations. Police-reported crash data at selected freeway merging and diverging areas in the state of Ohio were used for the development of the models. A generalized ordinal logit model also known as partial proportional odds model was applied to identify significant factors increasing the likelihood of one of the five KABCO scale of injury severity: no injuries, possible/invisible injuries, non-incapacitating injuries, incapacitating injuries, or fatal injuries. The results of this study show that semi-truck related crashes, higher number of lanes on freeways, higher number of lanes on ramps, speeding related crashes, and alcohol related crashes tend to increase the likelihood of sustaining severe injuries at freeway merging locations. In addition, females and older persons are more likely to sustain severe injuries especially at freeway merge locations. Alcohol related crashes, speeding related crashes, angle-type collisions, and lane-ramp configuration type D significantly increase the likelihood of severe injury crashes at diverging areas. Poor lighting condition tends to increase non-incapacitating injuries at diverging areas only. Moreover, adverse weather condition increases the likelihood of no-injury and fatal injuries at merging areas only and adverse road conditions tend to increase a range of injury severity levels from possible/invisible injuries to incapacitating injuries at merging areas only.  相似文献   

10.
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car–car crashes, and sideswipe crashes have opposite effects between car–car and truck–truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity.  相似文献   

11.
This research explores differences in injury severity between male and female drivers in single and two-vehicle accidents involving passenger cars, pickups, sport-utility vehicles (SUVs), and minivans. Separate multivariate multinomial logit models of injury severity are estimated for male and female drivers. The models predict the probability of four injury severity outcomes: no injury (property damage only), possible injury, evident injury, and fatal/disabling injury. The models are conditioned on driver gender and the number and type of vehicles involved in the accident. The conditional structure avoids bias caused by men and women's different reporting rates, choices of vehicle type, and their different rates of participation as drivers, which would affect a joint model of all crashes. We found variables that have opposite effects for the genders, such as striking a barrier or a guardrail, and crashing while starting a vehicle. The results suggest there are important behavioral and physiological differences between male and female drivers that must be explored further and addressed in vehicle and roadway design.  相似文献   

12.
We study the severity of accidents on the German Autobahn in the state of North Rhine-Westphalia using data for the years 2009 until 2011. We use a multinomial logit model to identify statistically relevant factors explaining the severity of the most severe injury, which is classified into the four classes fatal, severe injury, light injury and property damage. Furthermore, to account for unobserved heterogeneity we use a random parameter model. We study the effect of a number of factors including traffic information, road conditions, type of accidents, speed limits, presence of intelligent traffic control systems, age and gender of the driver and location of the accident. Our findings are in line with studies in different settings and indicate that accidents during daylight and at interchanges or construction sites are less severe in general. Accidents caused by the collision with roadside objects, involving pedestrians and motorcycles, or caused by bad sight conditions tend to be more severe. We discuss the measures of the 2011 German traffic safety programm in the light of our results.  相似文献   

13.
Effects of work zone presence on injury and non-injury crashes.   总被引:2,自引:0,他引:2  
Work zones in the United States have approximately 700 traffic-related fatalities, 24,000 injury crashes, and 52,000 non-injury crashes every year. Due to future highway reconstruction needs, work zones are likely to increase in number, duration, and length. This study focuses on analyzing the effect of work zone duration mainly due to its policy-sensitivity. To do so, we created a unique dataset of California freeway work zones that included crash data (crash frequency and injury severity), road inventory data (average daily traffic (ADT) and urban/rural character), and work zone related data (duration, length, and location). Then, we investigated crash rates and crash frequencies in the pre-work zone and during-work zone periods. For the freeway work zones investigated in this study, the total crash rate in the during-work zone period was 21.5% higher (0.79 crashes per million vehicle kilometer (MVKM)) than the pre-work zone period (0.65 crashes per MVKM). Compared with the pre-work zone period, the increase in non-injury and injury crash rates in the during-work zone period was 23.8% and 17.3%, respectively. Next, crash frequencies were investigated using negative binomial models, which showed that frequencies increased with increasing work zone duration, length, and average daily traffic. The important finding is that after controlling for various factors, longer work zone duration significantly increases both injury and non-injury crash frequencies. The implications of the study findings are discussed in the paper.  相似文献   

14.
A most commonly identified exogenous factor that significantly affects traffic crash injury severity sustained is the collision type variable. Most studies consider collision type only as an explanatory variable in modeling injury. However, it is possible that each collision type has a fundamentally distinct effect on injury severity sustained in the crash. In this paper, we examine the hypothesis that collision type fundamentally alters the injury severity pattern under consideration. Toward this end, we propose a joint modeling framework to study collision type and injury severity sustained as two dimensions of the severity process. We employ a copula based joint framework that ties the collision type (represented as a multinomial logit model) and injury severity (represented as an ordered logit model) through a closed form flexible dependency structure to study the injury severity process. The proposed approach also accommodates the potential heterogeneity (across drivers) in the dependency structure. Further, the study incorporates collision type as a vehicle-level, as opposed to a crash-level variable as hitherto assumed in earlier research, while also examining the impact of a comprehensive set of exogenous factors on driver injury severity. The proposed modeling system is estimated using collision data from the province of Victoria, Australia for the years 2006 through 2010.  相似文献   

15.
    
This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing.  相似文献   

16.
The question of whether crash injury severity should be modeled using an ordinal response model or a non-ordered (multinomial) response model is persistent in traffic safety engineering. This paper proposes the use of the partial proportional odds (PPO) model as a statistical modeling technique that both bridges the gap between ordered and non-ordered response modeling, and avoids violating the key assumptions in the behavior of crash severity inherent in these two alternatives. The partial proportional odds model is a type of logistic regression that allows certain individual predictor variables to ignore the proportional odds assumption which normally forces predictor variables to affect each level of the response variable with the same magnitude, while other predictor variables retain this proportional odds assumption. This research looks at the effectiveness of this PPO technique in predicting vehicular crash severities on Connecticut state roads using data from 1995 to 2009. The PPO model is compared to ordinal and multinomial response models on the basis of adequacy of model fit, significance of covariates, and out-of-sample prediction accuracy. The results of this study show that the PPO model has adequate fit and performs best overall in terms of covariate significance and holdout prediction accuracy. Combined with the ability to accurately represent the theoretical process of crash injury severity prediction, this makes the PPO technique a favorable approach for crash injury severity modeling by adequately modeling and predicting the ordinal nature of the crash severity process and addressing the non-proportional contributions of some covariates.  相似文献   

17.
Standard multinomial logit (MNL) and mixed logit (MXL) models are developed to estimate the degree of influence that bicyclist, driver, motor vehicle, geometric, environmental, and crash type characteristics have on bicyclist injury severity, classified as property damage only, possible, nonincapacitating or severe (i.e., incapacitating or fatal) injury. This study is based on 10,029 bicycleinvolved crashes that occurred in the State of Ohio from 2002 to 2008. Results of likelihood ratio tests reveal that some of the factors affecting bicyclist injury severity at intersection and non-intersection locations are substantively different and using a common model to jointly estimate impacts on severity at both types of locations may result in biased or inconsistent estimates. Consequently, separate models are developed to independently assess the impacts of various factors on the degree of bicyclist injury severity resulting from crashes at intersection and non-intersection locations.Several covariates are found to have similar impacts on injury severity at both intersection and non-intersection locations. Conversely, six variables were found to significantly influence injury severity at intersection locations but not non-intersection locations while four variables influenced bicyclist injury severity only at non-intersection locations. In crashes occurring at intersection locations, the likelihood of severe bicyclist injury increases by 14.8 percent if the bicyclist is not wearing a helmet, 82.2 percent if the motorist is under the influence of alcohol, 141.3 percent if the crash-involved motor vehicle is a van, 40.6 percent if the motor vehicle strikes the side of the bicycle, and 182.6 percent if the crash occurs on a horizontal curve with a grade. Results from non-intersection locations show the likelihood of severe injuries increases by 374.5 percent if the bicyclist is under the influence of drugs, 150.1 percent if the motorist is under the influence of alcohol, 53.5 percent if the motor vehicle strikes the side of the bicycle and 99.9 percent if the crash-involved motor vehicle is a heavy-duty truck.  相似文献   

18.
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.  相似文献   

19.
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states.  相似文献   

20.
The objective of this paper is to study the contributors influencing ran-off-road (ROR) crash severities in a setting that has not been analysed in the literature, namely on freeways not designed according to the “forgiving roadside” concept. To accomplish the analysis, ROR crash data were collected on freeway road sections in Portugal and multinomial and mixed logit models were estimated using the driver injury and the most severely injured occupant as outcome variables. Our results are in line with previous findings reported in the literature on ROR crash severity in a number of distinct settings. Most importantly, this study shows the contribution of critical slopes and vehicle rollover towards fatal injuries and highlights the importance of introducing the “forgiving roadside” concept to mitigate ROR crash severity in Portuguese freeways. The study also indicates the importance of protecting errant vehicles particularly in horizontal curves, as these are linked with fatalities. Finally, the empirical findings from the developed models revealed problems in current Portuguese roadside design, especially with regards to criteria for forgiving slopes provision and warrants for safety barrier installation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号