首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous materials are attractive substances for designing pharmaceutical particulates. However, understanding the behavior of liquid absorption into the intra-pores and interstices of porous carrier particles is important to effectively manufacture active pharmaceutical ingredients (APIs) using these carriers. In this study, we established a simple and practical method for evaluating the liquid absorption behavior of porous carriers using force tensiometry and a capillary rise technique. Different-sized tablets of porous materials were prepared and evaluated by this method using various solvents to estimate liquid absorption into the intra-particle pores and interstices of the particles. The amount of liquid trapped in the interstices of the particles decreased with decreasing tablet volume, after which the amount of liquid in the intra-particle pores could be estimated. Finally, API-loaded particles were prepared by absorbing the API solution into porous carriers based on the intra-capacity revealed above. No free API was found on the surface of the prepared particles, as it was well absorbed into the intra-particle pores. Collectively, this tensiometer method using different-sized tablets of porous materials appears to be a promising technique for evaluating the liquid absorption characteristics of porous pharmaceutical materials.  相似文献   

2.
A cryogenic liquid turbine expander is developed as a replacement for traditional Joule–Thomson valves used in the cryogenic systems for the purpose of energy saving. An experimental study was conducted to evaluate the performance of the turbine expander and is the subject of this paper. The test rig comprises a closed-loop liquefied nitrogen system, cryogenic liquid turbine expander unit, and its auxiliary and measuring systems. The test operating parameters of the turbine expander are determined on the basis of flow similarity rules. Pre-cooling of the liquid nitrogen system is first performed, and then the tests are conducted at different flow rates and speed ratios. The turbine expander flow rate, inlet and outlet pressure and temperature, rotational speed and shaft torque were measured. Experimental results and their uncertainties were analyzed and discussed. The following are demonstrated: (1) For both test cases, turbine expander peak isentropic efficiency is respectively 78.8% and 68.4% obtained at 89.6% and 92% of the design flow rate. The large uncertainties in isentropic efficiency are caused by the large enthalpy variations subjected to small measurement uncertainties in temperature and pressure. (2) Total efficiency and hydraulic efficiency of the turbine expander are obtained. They are essentially the same, since both include flow-related effects and also bearing losses. Comparisons of total efficiency and hydraulic efficiency were used to justify measurement uncertainties of different quantities, since the former involves the measured mass flow rate and enthalpy drop (being dependant on inlet and outlet temperature and pressure), while the latter involves the actual shaft power, volume flow rate, and inlet and outlet pressure. (3) Losses in flow passages and the shaft-bearing system have been inferred based on the measured turbine expander total efficiency, isentropic efficiency, and mechanical efficiency, which are respectively 57.6–74.8%, 62.1–78.8% and 89.5–96.4%. Uncertainty analysis is conducted for experimental isentropic efficiency, hydraulic efficiency, and total efficiency. The hydraulic efficiency seems to be the best measure for assessing the performance of cryogenic liquid turbine expander. (4) Isentropic efficiency versus speed ratio is obtained from the experimental data. The experimental isentropic efficiency increases with the speed ratio, and it reaches 78.8% at the largest experimental speed ratio. A higher efficiency would be achieved if the speed ratio could reach a larger value. This provides some guidance for an optimal operation of the turbine expander in the future.  相似文献   

3.
The design and construction of inner containment tanks for liquid oxygen and liquid nitrogen is discussed. Standards and recommendations by official bodies are cited and potential failure areas are highlighted.  相似文献   

4.
由于夹层真空度下降、绝热保温材料珠光砂下沉,造成4个液氮贮罐的冷损大幅增加,通过对夹层补充珠光砂、重新抽真空,有效提高了液氮贮罐的绝热保冷效果,降低冷损。  相似文献   

5.
We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is nonlinear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media.  相似文献   

6.
The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage.One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of −195.8 °C, the temperature of the liquid nitrogen will reduce.This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.  相似文献   

7.
The cavitating flow of cryogenic liquid through a spray nozzle is influenced by many factors, such as unique thermophysical properties of cryogenic liquid, the inflow temperature and the complicated geometrical structure of the spray nozzle. The geometrical parameters of liquid nitrogen spray nozzles have a profound impact on cavitating flow which in turn affects spray atomization characteristics and cooling performance. In present study, CFD simulations are performed to investigate influence of the nozzle geometry on the liquid nitrogen cavitating flow. The mixture model is used to describe the liquid-vapor two phase flow, and both the cavitation and evaporation are considered for the phase change. The predictions of mass flow of liquid nitrogen spray are validated against experimental results. The effects of geometric parameters, including the outlet orifice diameter and the length of nozzle, the inlet edge angle of orifice, the inlet corner radius of orifice, the orifice shape and different positions of swirl vanes, are investigated under a wide range of pressure difference and inflow temperature. The results show that the effects of geometric parameters on cavitating flow show different trends under subcooled conditions compared with saturated temperature conditions. The flow characteristics are more affected by the changes of the inlet edge angle, the inlet corner radius, and the orifice shape. The insert of swirl vanes has an effect on the distribution of the cavitated vapor within the orifice, but it has little influence on flow characteristics. The results could enrich our knowledge of liquid nitrogen cavitating flow in spray nozzles of various shapes.  相似文献   

8.
J. Selj  A. Thøgersen 《Thin solid films》2011,519(9):2998-3001
The effect of chemical etching on Porous Silicon (PS) samples is studied and quantified by using variable angle spectroscopic ellipsometry (VASE). The main aim of this work is to assess the impact of such etching on the physical properties of electrochemically etched, thin PS antireflection coatings (ARC) for solar cell applications. In this study, detailed models of PS layers etched at constant current densities are created using a graded uniaxial Bruggeman Effective Medium Approximation (BEMA). Changes in porosity, thickness, and optical anisotropy of the PS samples due to chemical etching are determined as a function of etching time after PS formation. Three series of PS films, etched at three different current densities, are investigated. It is shown that significant changes in physical properties occur for chemical etching times longer than ~ 60 s. The anodic etching process for fabricating PS ARC structures can be performed in less than 10 s. Therefore, chemical etching does not lead to significant deviations from the intended PS structure and is not seen as a hindrance to accurate control of processes for fabricating thin PS ARCs.  相似文献   

9.
A cryogenic loop heat pipe (CLHP) has been developed for future aerospace applications at the TIPC (Technical Institute of Physics and Chemistry). The device has been tested in different situations with constant heat sink temperature of about 78 K. The effects of the reservoir volume and the pore size of the primary wick on the performance of CLHP were investigated. With a wick pore size of 2 μm, the CLHP can transfer a heat load of 26 W under horizontal orientation no matter what size of the reservoir volume being used. On the contrary, when the pore size was large (10 μm), the heat transfer capability of the CLHP can be up to 26 W only when a smaller reservoir (60 cc) was used, and its ability to operate against gravity was greatly weakened. Moreover, when the working fluid was oxygen instead of nitrogen, the heat transfer capability can be up to 50 W under horizontal orientation with the other experimental conditions remaining the same.  相似文献   

10.
Ionic liquid of ultralong carbon nanotubes   总被引:2,自引:0,他引:2  
  相似文献   

11.
Mingwei Zhao  Na Li  Li Yu 《Materials Letters》2008,62(30):4591-4593
Hollow silica spheres have been successfully synthesized by using the ionic liquid microemulsion droplets as the template. The morphology and microstructures of the silica spheres were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), and Nitrogen adsorption-desorption measurements. The obtained images showed that the average size of the silica spheres was almost between 150 and 300 nm. The Nitrogen adsorption-desorption investigation on the silica spheres indicated the amorphous structure on the interface. Both of these two results provide us new insights into this novel template and hollow silica spheres were for the first time prepared free of additional acid and alkali conditions. The possible mechanism for the formation of silica spheres has been put forward and discussed in details.  相似文献   

12.
A micromechanics model and a computational homogenization method were developed to examine the macroscopic elastoplasticity and yield behavior of closed-cell porous materials with varied inner gas pressures. For the uniaxial stress–strain relation of the porous material, the micromechanics model coincides well with the numerical homogenization, especially for the case of relatively low porosity and gas pressures. The effects of the combination of the different gas pressures on the uniaxial stress–strain curve, the nominal Poisson’s ratio, yield surface and initial yield strength of the material are systematically investigated. The multiple gas pressures can induce the tension–compression asymmetry of the uniaxial stress–strain curves and the nominal Poisson’s ratio of nonlinear deformation. In particular it is shown that when the multiple gas pressures coincide, the yield surface of the porous material with inner gas pressures can be simply obtained from that of the porous material without inner pressures by a shift along the negative direction of the hydrostatic stress axis. However, when the multiple pressures are different, in addition to a translation along the hydrostatic axis, the yield surface undergoes a change in shape and size, and the maximal equivalent stress is lowered by a difference in gas pressures. Furthermore, the multiple gas pressures have a significant effect to reduce the yield strength of the closed cell porous materials.  相似文献   

13.
孔结构周期调制通孔多孔铝合金及其吸声性能   总被引:4,自引:0,他引:4  
采用铝熔体在周期多孔介质间渗流凝固方法制备了孔结构周期调制多孔铝合金,在试验范围内吸声系数的实验测量值与模型计算基本吻合,基于模型研究了调制周期数、调制顺序及同一周期单元内不同孔径层的厚度比与吸声性能的关系,表明孔径的调制分布对2 kHz以上的宽频声波吸收有较大影响,对低频吸收未发现明显改善.  相似文献   

14.
Modeling and experimental reflectance spectra of porous silicon single layers at different steps of functionalization and protein grafting process are adjusted in order to determine the volume fraction of the biomolecules attached to the internal pore surface. This method is applied in order to control the efficiency of the chemical functionalization process of porous silicon single layers. Using results from single porous silicon layer study, theoretical microcavity is simulated at each step of the functionalization process. The calculated reflectance spectrum is in good agreement to the experimental one. Therefore the single layers study can be applied to multilayer structures and can be adapted for other optical structures such as waveguides, interferometers for biosensing applications.  相似文献   

15.
Theoretical and experimental discussions on a novel method to solve the thermal mismatch problem in heteroepitaxial growth have been reviewed. It has been predicted theoretically for structures such as Ge/Si and GaAs/Si that the difference in thermal expansion coefficients can be compensated for by the elastic strain generated by hydrostatic pressure. This theoretical prediction has been verified experimentally using GaAs-on-Si structures, in which the structures are formed by metalorganic chemical vapor deposition and subsequently annealed under ultrahigh pressure. It has been found that for annealing at pressures up to 2.1 GPa, the strain in GaAs films decreases linearly with increasing pressure and becomes zero at a pressure of around 1.9 GPa. It has also been found that the strain depends weakly on the annealing temperature, which ranged from 300 to 500 °C. Concerning the crystalline quality of the annealed GaAs films, a slight increase in the minimum channeling yield in Rutherford backscattering spectrometry has been observed in the samples with broad-area GaAs films. It has been found, however, that degradation in the crystalline quality can be avoided by etching the GaAs films in a pattern of stripes 10 μm wide.  相似文献   

16.
介绍空分制氮装置采用膨胀机循环与液氮循环的两种工艺流程及能量平衡 ,示出了两种循环的实例比较。指出外供液氮可以作为冷源替代膨胀机 ,且单耗低、操作更方便 ,设备维护量更小、氮气提取率更高  相似文献   

17.
Silicon oxycarbide porous ceramics were obtained through pyrolysis of a silicone resin filled with SiOC powders via a simple self-blowing process. The effects of exterior gas pressure on the porosity, compressive strength and microstructure of the porous ceramics were investigated. The porosity (total and open) generally decreased with increasing exterior gas pressure. It was possible to control the total and open porosity of porous ceramics within a range of 58.3-69.8% and 43.9-58.4% respectively, by adjusting the exterior gas pressure while keeping the silicone resin content at 70 vol.%. The compressive strength increased with increasing the exterior gas pressure, and the average compressive strength of the porous ceramics was in the range of 3.9-14.9 MPa. Micrographs indicated that with the exterior gas pressure increasing, the final pore structure of porous ceramics became more and more regular and equirotal.  相似文献   

18.
The objective of this study was to examine the mechanism how the surface of porous TiNi compounds produced by SHS method evolves. The prepared samples were investigated using light-microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). The results indicated that the surface of all pores is represented by a granular stratum due to dendrite liquation by peritectic crystallization mechanism. The voids of 2–15?μm in size are formed owing to a capillary spreading of the liquid. Reaction gases with dissociated carbon, nitrogen, and oxygen are responsible for heat-and-mass transfer through the forming pores. High pressure-temperature effect of reaction gases on the melt causes the forming voids to coalesce, as well as transfers the peritectic liquid (PL) throughout the open pores catalyzing a distinctive spitted topography. It is through the chemisorption of gasiform nonmetallics by the pore surface melt, where these impurities are chemically bound, that it was formed a massive corrosion-resistant amorphous-nanocrystalline stratified shell deduced as an intermetallic oxycarbonitride layer.  相似文献   

19.
Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.  相似文献   

20.
Hollow and porous nanostructures have attracted a great deal of attention because of their widespread potential applications, and nanostructures with tunable size are desirable to optimize their properties. Therefore, simple and high yield methods for preparation of nanostructures with tunable sizes have been regarded as pursuing objects. Herein, we report a novel simple method for large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. The novel synthesis strategy involves oxidizing Zn spheres and polyhedrons in solid state to form a thin ZnO layer on the surface under low temperature, followed by removal of the Zn cores upon heating. Noticeably, not only can the diameter and shell thickness be respectively tuned, but also the shell thickness can be also easily controlled because of its slow oxidation rate in a solid-phase diffusion process under low temperature. It is obvious that this novel simple method involved here can readily be extended to other metal oxide systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号