首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study, a mixed logit model is developed to identify the heterogeneous impacts of gender-interpreted contributing factors on driver injury severities in single-vehicle rollover crashes. The random parameter of the variables in the mixed logit model, the heterogeneous mean, is elaborated by driver gender-based linear regression models. The model is estimated using crash data in New Mexico from 2010 to 2012. The percentage changes of factors’ predicted probabilities are calculated in order to better understand the model specifications. Female drivers are found more likely to experience severe or fatal injuries in rollover crashes than male drivers. However, the probability of male drivers being severely injured is higher than female drivers when the road surface is unpaved. Two other factors with fixed parameters are also found to significantly increase driver injury severities, including Wet and Alcohol Influenced. This study provides a better understanding of contributing factors influencing driver injury severities in rollover crashes as well as their heterogeneous impacts in terms of driver gender. Those results are also helpful to develop appropriate countermeasures and policies to reduce driver injury severities in single-vehicle rollover crashes.  相似文献   

2.
Rural roads carry less than fifty percent of the traffic in the United States. However, more than half of the traffic accident fatalities occurred on rural roads. This research focuses on analyzing injury severities involving single-vehicle crashes on rural roads, utilizing a latent class logit (LCL) model. Similar to multinomial logit (MNL) models, the LCL model has the advantage of not restricting the coefficients of each explanatory variable in different severity functions to be the same, making it possible to identify the impacts of the same explanatory variable on different injury outcomes. In addition, its unique model structure allows the LCL model to better address issues pertinent to the independence from irrelevant alternatives (IIA) property. A MNL model is also included as the benchmark simply because of its popularity in injury severity modeling. The model fitting results of the MNL and LCL models are presented and discussed. Key injury severity impact factors are identified for rural single-vehicle crashes. Also, a comparison of the model fitting, analysis marginal effects, and prediction performance of the MNL and LCL models are conducted, suggesting that the LCL model may be another viable modeling alternative for crash-severity analysis.  相似文献   

3.
The research described in this paper analyzed injury severities at a disaggregate level for single-vehicle (SV) and multi-vehicle (MV) large truck at-fault accidents for rural and urban locations in Alabama. Given the occurrence of a crash, four separate random parameter logit models of injury severity (with possible outcomes of major, minor, and possible or no injury) were estimated. The models identified different sets of factors that can lead to effective policy decisions aimed at reducing large truck-at-fault accidents for respective locations. The results of the study clearly indicated that there are differences between the influences of a variety of variables on the injury severities resulting from urban vs. rural SV and MV large truck at-fault accidents. The results showed that some variables were significant only in one type of accident model (SV or MV) but not in the other accident model. Again, some variables were found to be significant in one location (rural or urban) but not in other locations. The study also identified important factors that significantly impact the injury severity resulting from SV and MV large truck at-fault accidents in urban and rural locations based on the estimated values of average direct pseudo-elasticity. A careful study of the results of this study will help policy makers and transportation agencies identify location specific recommendations to increase safety awareness related to large truck involved accidents and to improve overall highway safety.  相似文献   

4.
Crashes occurring on rural two-lane highways are more likely to result in severe driver incapacitating injuries and fatalities. In this study, mixed logit models are developed to analyze driver injury severities in single-vehicle (SV) and multi-vehicle (MV) crashes on rural two-lane highways in New Mexico from 2010 to 2011. A series of significant contributing factors in terms of driver behavior, weather conditions, environmental characteristics, roadway geometric features and traffic compositions, are identified and their impacts on injury severities are quantified for these two types of crashes, respectively. Elasticity analyses and transferability tests were conducted to better understand the models’ specification and generality. The research findings indicate that there are significant differences in causal attributes determining driver injury severities between SV and MV crashes. For example, more severe driver injuries and fatalities can be observed in MV crashes when motorcycles or trucks are involved. Dark lighting conditions and dusty weather conditions are found to significantly increase MV crash injury severities. However, SV crashes demonstrate different characteristics influencing driver injury severities. For example, the probability of having severe injury outcomes is higher when vans are identified in SV crashes. Drivers’ overtaking actions will significantly increase SV crash injury severities. Although some common attributes, such as alcohol impaired driving, are significant in both SV and MV crash severity models, their effects on different injury outcomes vary substantially. This study provides a better understanding of similarities and differences in significant contributing factors and their impacts on driver injury severities between SV and MV crashes on rural two-lane highways. It is also helpful to develop cost-effective solutions or appropriate injury prevention strategies for rural SV and MV crashes.  相似文献   

5.
Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention.  相似文献   

6.
The severity of traffic-related injuries has been studied by many researchers in recent decades. However, previous research has seldom accounted for the effects of curbed outside shoulders on traffic-related injury severity. This study applies the zero-inflated ordered probit (ZIOP) model to evaluate the influences of curbed outside shoulders, speed limit change, as well as other traditional factors on the injury severity of single-vehicle crashes. Crash data from 2003 to 2007 in the Illinois Highway Safety Database were employed in this study.  相似文献   

7.
Most of the injury-severity analyses to date have focused primarily on modeling the most-severe injury of any crash, although a substantial fraction of crashes involve multiple vehicles and multiple persons. In this study, we present an extensive exploratory analysis that highlights that the highest injury severity is not necessarily the comprehensive indicator of the overall severity of any crash. Subsequently, we present a panel, hetroskedastic ordered-probit model to simultaneously analyze the injury severities of all persons involved in a crash. The models are estimated in the context of large-truck crashes. The results indicate strong effects of person-, driver-, vehicle-, and crash-characteristics on the injury severities of persons involved in large-truck crashes. For example, several driver behavior characteristics (such as use of illegal drugs, DUI, and inattention) were found to be statistically significant predictors of injury severity. The availability of airbags and the use of seat-belts are also found to be associated with less-severe injuries to car-drivers and car-passengers in the event of crashes with large trucks. Car drivers’ familiarity with the vehicle and the roadway are also important for both the car drivers and passengers. Finally, the models also indicate the strong presence of intra-vehicle correlations (effect of common vehicle-specific unobserved factors) among the injury propensities of all persons within a vehicle.  相似文献   

8.
Crash prediction models still constitute one of the primary tools for estimating traffic safety. These statistical models play a vital role in various types of safety studies. With a few exceptions, they have often been employed to estimate the number of crashes per unit of time for an entire highway segment or intersection, without distinguishing the influence different sub-groups have on crash risk. The two most important sub-groups that have been identified in the literature are single- and multi-vehicle crashes. Recently, some researchers have noted that developing two distinct models for these two categories of crashes provides better predicting performance than developing models combining both crash categories together. Thus, there is a need to determine whether a significant difference exists for the computation of confidence intervals when a single model is applied rather than two distinct models for single- and multi-vehicle crashes. Building confidence intervals have many important applications in highway safety.This paper investigates the effect of modeling single- and multi-vehicle (head-on and rear-end only) crashes separately versus modeling them together on the prediction of confidence intervals of Poisson-gamma models. Confidence intervals were calculated for total (all severities) crash models and fatal and severe injury crash models. The data used for the comparison analysis were collected on Texas multilane undivided highways for the years 1997-2001. This study shows that modeling single- and multi-vehicle crashes separately predicts larger confidence intervals than modeling them together as a single model. This difference is much larger for fatal and injury crash models than for models for all severity levels. Furthermore, it is found that the single- and multi-vehicle crashes are not independent. Thus, a joint (bivariate) model which accounts for correlation between single- and multi-vehicle crashes is developed and it predicts wider confidence intervals than a univariate model for all severities. Finally, the simulation results show that separate models predict values that are closer to the true confidence intervals, and thus this research supports previous studies that recommended modeling single- and multi-vehicle crashes separately for analyzing highway segments.  相似文献   

9.
Rollover crash is one of the major types of traffic crashes that induce fatal injuries. It is important to investigate the factors that affect rollover crashes and their influence on driver injury severity outcomes. This study employs support vector machine (SVM) models to investigate driver injury severity patterns in rollover crashes based on two-year crash data gathered in New Mexico. The impacts of various explanatory variables are examined in terms of crash and environmental information, vehicle features, and driver demographics and behavior characteristics. A classification and regression tree (CART) model is utilized to identify significant variables and SVM models with polynomial and Gaussian radius basis function (RBF) kernels are used for model performance evaluation. It is shown that the SVM models produce reasonable prediction performance and the polynomial kernel outperforms the Gaussian RBF kernel. Variable impact analysis reveals that factors including comfortable driving environment conditions, driver alcohol or drug involvement, seatbelt use, number of travel lanes, driver demographic features, maximum vehicle damages in crashes, crash time, and crash location are significantly associated with driver incapacitating injuries and fatalities. These findings provide insights for better understanding rollover crash causes and the impacts of various explanatory factors on driver injury severity patterns.  相似文献   

10.
Standard multinomial logit (MNL) and mixed logit (MXL) models are developed to estimate the degree of influence that bicyclist, driver, motor vehicle, geometric, environmental, and crash type characteristics have on bicyclist injury severity, classified as property damage only, possible, nonincapacitating or severe (i.e., incapacitating or fatal) injury. This study is based on 10,029 bicycleinvolved crashes that occurred in the State of Ohio from 2002 to 2008. Results of likelihood ratio tests reveal that some of the factors affecting bicyclist injury severity at intersection and non-intersection locations are substantively different and using a common model to jointly estimate impacts on severity at both types of locations may result in biased or inconsistent estimates. Consequently, separate models are developed to independently assess the impacts of various factors on the degree of bicyclist injury severity resulting from crashes at intersection and non-intersection locations.Several covariates are found to have similar impacts on injury severity at both intersection and non-intersection locations. Conversely, six variables were found to significantly influence injury severity at intersection locations but not non-intersection locations while four variables influenced bicyclist injury severity only at non-intersection locations. In crashes occurring at intersection locations, the likelihood of severe bicyclist injury increases by 14.8 percent if the bicyclist is not wearing a helmet, 82.2 percent if the motorist is under the influence of alcohol, 141.3 percent if the crash-involved motor vehicle is a van, 40.6 percent if the motor vehicle strikes the side of the bicycle, and 182.6 percent if the crash occurs on a horizontal curve with a grade. Results from non-intersection locations show the likelihood of severe injuries increases by 374.5 percent if the bicyclist is under the influence of drugs, 150.1 percent if the motorist is under the influence of alcohol, 53.5 percent if the motor vehicle strikes the side of the bicycle and 99.9 percent if the crash-involved motor vehicle is a heavy-duty truck.  相似文献   

11.
The research described in this paper explored the factors contributing to the injury severity resulting from pedestrian at-fault crashes in rural and urban locations in Alabama incorporating the effects of randomness across the observations. Given the occurrence of a crash, random parameter logit models of injury severity (with possible outcomes of major, minor, and possible or no injury) for rural and urban locations were estimated. The estimated models identified statistically significant factors influencing the pedestrian injury severities. The results clearly indicated that there are differences between the influences of a variety of variables on the injury severities resulting from urban versus rural pedestrian at-fault accidents. The results showed that some variables were significant only in one location (urban or rural) but not in the other location. Also, estimation findings showed that several parameters could be modeled as random parameters indicating their varying influences on the injury severity. Based on the results obtained, this paper discusses the effects of different variables on pedestrian injury severities and their possible explanations. From planning and policy perspective, the results of this study justify the need for location specific pedestrian safety research and location specific carefully tailored pedestrian safety campaigns.  相似文献   

12.
Recent studies in the area of highway safety have demonstrated the usefulness of logit models for modeling crash injury severities. Use of these models enables one to identify and quantify the effects of factors that contribute to certain levels of severity. Most often, these models are estimated assuming equal probability of the occurrence for each injury severity level in the data. However, traffic crash data are generally characterized by underreporting, especially when crashes result in lower injury severity. Thus, the sample used for an analysis is often outcome-based, which can result in a biased estimation of model parameters. This is more of a problem when a nested logit model specification is used instead of a multinomial logit model and when true shares of the outcomes-injury severity levels in the population are not known (which is almost always the case). This study demonstrates an application of a recently proposed weighted conditional maximum likelihood estimator in tackling the problem of underreporting of crashes when using a nested logit model for crash severity analyses.  相似文献   

13.
This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing.  相似文献   

14.
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention.  相似文献   

15.
For more than five decades, wrong-way driving (WWD) has been notorious as a traffic safety issue for controlled-access highways. Numerous studies and efforts have tried to identify factors that contribute to WWD occurrences at these sites in order to delineate between WWD and non-WWD crashes. However, none of the studies investigate the effect of various confounding variables on the injury severity being sustained by the at-fault drivers in a WWD crash. This study tries to fill this gap in the existing literature by considering possible variables and taking into account the ordinal nature of injury severity using three different ordered-response models: ordered logit or proportional odds (PO), generalized ordered logit (GOL), and partial proportional odds (PPO) model. The findings of this study reveal that a set of variables, including driver’s age, condition (i.e., intoxication), seatbelt use, time of day, airbag deployment, type of setting, surface condition, lighting condition, and type of crash, has a significant effect on the severity of a WWD crash. Additionally, a comparison was made between the three proposed methods. The results corroborate that the PPO model outperforms the other two models in terms of modeling injury severity using our database. Based on the findings, several countermeasures at the engineering, education, and enforcement levels are recommended.  相似文献   

16.
Work zones are critical parts of the transportation infrastructure renewal process consisting of rehabilitation of roadways, maintenance, and utility work. Given the specific nature of a work zone (complex arrangements of traffic control devices and signs, narrow lanes, duration) a number of crashes occur with varying severities involving different vehicle sizes. In this paper we attempt to investigate the causal factors contributing to injury severity of large truck crashes in work zones. Considering the discrete nature of injury severity categories, a number of comparable econometric models were developed including multinomial logit (MNL), nested logit (NL), ordered logit (ORL), and generalized ordered logit (GORL) models. The MNL and NL models belong to the class of unordered discrete choice models and do not recognize the intrinsic ordinal nature of the injury severity data. The ORL and GORL models, on the other hand, belong to the ordered response framework that was specifically developed for handling ordinal dependent variables. Past literature did not find conclusive evidence in support of either framework. This study compared these alternate modeling frameworks for analyzing injury severity of crashes involving large trucks in work zones. The model estimation was undertaken by compiling a database of crashes that (1) involved large trucks and (2) occurred in work zones in the past 10 years in Minnesota. Empirical findings indicate that the GORL model provided superior data fit as compared to all the other models. Also, elasticity analysis was undertaken to quantify the magnitude of impact of different factors on work zone safety and the results of this analysis suggest the factors that increase the risk propensity of sustaining severe crashes in a work zone include crashes in the daytime, no control of access, higher speed limits, and crashes occurring on rural principal arterials.  相似文献   

17.
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car–car crashes, and sideswipe crashes have opposite effects between car–car and truck–truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity.  相似文献   

18.
Young people are a risk to themselves and other road users, as motor vehicle crashes are the leading cause of their death. A thorough understanding of the most important factors associated with injury severity in crashes involving young drivers is important for designing well-targeted restrictive measures within youth-oriented road safety programs. The current study estimates discrete choice models of injury severity of crashes involving young drivers conditional on these crashes having occurred. The analysis examined a comprehensive set of single-vehicle and two-vehicle crashes involving at least one 15–24 year-old driver in New Zealand between 2002 and 2011 that resulted in minor, serious or fatal injuries. A mixed logit model accounting for heterogeneity and heteroscedasticity in the propensity to injury severity outcomes and for correlation between serious and fatal injuries proved a better fit than a binary and a generalized ordered logit. Results show that the young drivers’ behavior, the presence of passengers and the involvement of vulnerable road users were the most relevant factors associated with higher injury severity in both single-vehicle and two-vehicle crashes. Seatbelt non-use, inexperience and alcohol use were the deadliest behavioral factors in single-vehicle crashes, while fatigue, reckless driving and seatbelt non-use were the deadliest factors in two-vehicle crashes. The presence of passengers in the young drivers’ vehicle, and in particular a combination of males and females, dramatically increased the probability of serious and fatal injuries. The involvement of vulnerable road users, in particular on rural highways and open roads, considerably amplified the probability of higher crash injury severity.  相似文献   

19.
This study identifies and compares the significant factors affecting pedestrian crash injury severity at signalized and unsignalized intersections. The factors explored include geometric predictors (e.g., presence and type of crosswalk and presence of pedestrian refuge area), traffic predictors (e.g., annual average daily traffic (AADT), speed limit, and percentage of trucks), road user variables (e.g., pedestrian age and pedestrian maneuver before crash), environmental predictors (e.g., weather and lighting conditions), and vehicle-related predictors (e.g., vehicle type). The analysis was conducted using the mixed logit model, which allows the parameter estimates to randomly vary across the observations. The study used three years of pedestrian crash data from Florida. Police reports were reviewed in detail to have a better understanding of how each pedestrian crash occurred. Additionally, information that is unavailable in the crash records, such as at-fault road user and pedestrian maneuver, was collected. At signalized intersections, higher AADT, speed limit, and percentage of trucks; very old pedestrians; at-fault pedestrians; rainy weather; and dark lighting condition were associated with higher pedestrian severity risk. For example, a one-percent higher truck percentage increases the probability of severe injuries by 1.37%. A one-mile-per-hour higher speed limit increases the probability of severe injuries by 1.22%. At unsignalized intersections, pedestrian walking along roadway, middle and very old pedestrians, at-fault pedestrians, vans, dark lighting condition, and higher speed limit were associated with higher pedestrian severity risk. On the other hand, standard crosswalks were associated with 1.36% reduction in pedestrian severe injuries. Several countermeasures to reduce pedestrian injury severity are recommended.  相似文献   

20.
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using intra-class correlation coefficient (ICC) and deviance information criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time and in good street-lighting condition as well as those involving pedestrian injuries tend to be less severe. But crashes that occur in night time, at T/Y type intersections, and on right-most lane, as well as those that occur in intersections where red light cameras are installed tend to be more severe. Moreover, heavy vehicles have a better resistance on severe crash and thus induce less severe injuries, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号