首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident.  相似文献   

2.
Since duration prediction is one of the most important steps in an accident management process, there have been several approaches developed for modeling accident duration. This paper presents a model for the purpose of accident duration prediction based on accurately recorded and large accident dataset from the Korean Freeway Systems. To develop the duration prediction model, this study utilizes the log-logistic accelerated failure time (AFT) metric model and a 2-year accident duration dataset from 2006 to 2007. Specifically, the 2006 dataset is utilized to develop the prediction model and then, the 2007 dataset was employed to test the temporal transferability of the 2006 model. Although the duration prediction model has limitations such as large prediction error due to the individual differences of the accident treatment teams in terms of clearing similar accidents, the results from the 2006 model yielded a reasonable prediction based on the mean absolute percentage error (MAPE) scale. Additionally, the results of the statistical test for temporal transferability indicated that the estimated parameters in the duration prediction model are stable over time. Thus, this temporal stability suggests that the model may have potential to be used as a basis for making rational diversion and dispatching decisions in the event of an accident. Ultimately, such information will beneficially help in mitigating traffic congestion due to accidents.  相似文献   

3.
Transportation continues to be an integral part of modern life, and the importance of road traffic safety cannot be overstated. Consequently, recent road traffic safety studies have focused on analysis of risk factors that impact fatality and injury level (severity) of traffic accidents. While some of the risk factors, such as drug use and drinking, are widely known to affect severity, an accurate modeling of their influences is still an open research topic. Furthermore, there are innumerable risk factors that are waiting to be discovered or analyzed. A promising approach is to investigate historical traffic accident data that have been collected in the past decades. This study inspects traffic accident reports that have been accumulated by the California Highway Patrol (CHP) since 1973 for which each accident report contains around 100 data fields. Among them, we investigate 25 fields between 2004 and 2010 that are most relevant to car accidents. Using two classification methods, the Naive Bayes classifier and the decision tree classifier, the relative importance of the data fields, i.e., risk factors, is revealed with respect to the resulting severity level. Performances of the classifiers are compared to each other and a binary logistic regression model is used as the basis for the comparisons. Some of the high-ranking risk factors are found to be strongly dependent on each other, and their incremental gains on estimating or modeling severity level are evaluated quantitatively. The analysis shows that only a handful of the risk factors in the data dominate the severity level and that dependency among the top risk factors is an imperative trait to consider for an accurate analysis.  相似文献   

4.
Hazard based models for freeway traffic incident duration   总被引:1,自引:0,他引:1  
Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul—considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.  相似文献   

5.
The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a “silent killer.” Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006–2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity.  相似文献   

6.
Freeway traffic accidents are complicated events that are influenced by multiple factors including roadway geometry, drivers’ behavior, traffic conditions and environmental factors. Among the various factors, crash occurrence on freeways is supposed to be strongly influenced by the traffic states representing driving situations that are changed by road geometry and cause the change of drivers’ behavior. This paper proposes a methodology to investigate the relationship between traffic states and crash involvements on the freeway. First, we defined section-based traffic states: free flow (FF), back of queue (BQ), bottleneck front (BN) and congestion (CT) according to their distinctive patterns; and traffic states of each freeway section are determined based on actual measurements of traffic data from upstream and downstream ends of the section. Next, freeway crash data are integrated with the traffic states of a freeway section using upstream and downstream traffic measurements. As an illustrative study to show the applicability, we applied the proposed method on a 32-mile section of I-880 freeway. By integrating freeway crash occurrence and traffic data over a three-year period, we obtained the crash involvement rate for each traffic state. The results show that crash involvement rate in BN, BQ, and CT states are approximately 5 times higher than the one in FF. The proposed method shows promise to be used for various safety performance measurement including hot spot identification and prediction of the number of crash involvements on freeway sections.  相似文献   

7.
Statistical regression models, such as logit or ordered probit/logit models, have been widely employed to analyze injury severity of traffic accidents. However, most regression models have their own model assumptions and pre-defined underlying relationships between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimations of injury likelihood. The classification and regression tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study uses the 2001 accident data for Taipei, Taiwan. A CART model was developed to establish the relationship between injury severity and driver/vehicle characteristics, highway/environmental variables and accident variables. The results indicate that the most important variable associated with crash severity is the vehicle type. Pedestrians, motorcycle and bicycle riders are identified to have higher risks of being injured than other types of vehicle drivers in traffic accidents.  相似文献   

8.
以高速公路事故数据、交通流数据和天气数据为基础,以交通流为事故主要影响因素,建模预测高速公路事故实时风险。将事故记录作为病例组,采用病例对照方法来配对匹配实验样本,通过随机森林算法从众多变量中筛选出对事故风险影响最重要的10 个特征变量,以支持向量机建立模型预测事故实时风险。实验表明,通过随机森林筛选重要的特征变量,再使用支持向量机建模预测事故风险具有可行性,且以高斯核、Sigmoid核作为支持向量机的核函数比线性核函数和多项式核函数时分类准确性更高;其中,高斯核下支持向量机模型对事故风险预判的准确率达73.20%,对正常交通流的分类达91.44%。  相似文献   

9.
This paper presents the study carried out to develop accident predictive models based on the data collected on arterial roads in Addis Ababa. Poisson and negative binomial regression methods were used to relate the discrete accident data with the road and traffic flow explanatory variables. Significant accident predictive models were found with a number of significant explanatory variables. The results show that the existing inadequate road infrastructure and poor road traffic operations are the potential contributors of this ever-growing challenge of the road transport in Addis Ababa. The results also indicate that improvements in roadway width, pedestrian facilities, and access management are effective in reducing road traffic accidents.  相似文献   

10.
Data associated with over 9000 accidents involving large trucks and combination vehicles during a two-year period on freeways in the greater Los Angeles area are analyzed relative to collision factors, accident severity, and incident duration and lane closures. Relationships between type of collision and accident characteristics are explored using log-linear models. The results point to significant differences in several immediate consequences of truck-related freeway accidents according to collision type. These differences are associated both with the severity of the accident, in terms of injuries and fatalities, as well as with the impact of the accident on system performance, in terms of incident duration and lane closures. Hit-object and broadside collisions were the most severe types in terms of fatalities and injuries, respectively, and single-vehicle accidents are relatively more severe than two-vehicle accidents. The durations of accident incidents were found to be log-normally distributed for homogeneous groups of truck accidents, categorized according to type of collision and, in some instances, severity. The longest durations are typically associated with overturns.  相似文献   

11.
Considerable research has been carried out in recent years to establish relationships between crashes and traffic flow, geometric infrastructure characteristics and environmental factors for two-lane rural roads. Crash-prediction models focused on multilane rural roads, however, have rarely been investigated. In addition, most research has paid but little attention to the safety effects of variables such as stopping sight distance and pavement surface characteristics. Moreover, the statistical approaches have generally included Poisson and Negative Binomial regression models, whilst Negative Multinomial regression model has been used to a lesser extent. Finally, as far as the authors are aware, prediction models involving all the above-mentioned factors have still not been developed in Italy for multilane roads, such as motorways. Thus, in this paper crash-prediction models for a four-lane median-divided Italian motorway were set up on the basis of accident data observed during a 5-year monitoring period extending between 1999 and 2003. The Poisson, Negative Binomial and Negative Multinomial regression models, applied separately to tangents and curves, were used to model the frequency of accident occurrence. Model parameters were estimated by the Maximum Likelihood Method, and the Generalized Likelihood Ratio Test was applied to detect the significant variables to be included in the model equation. Goodness-of-fit was measured by means of both the explained fraction of total variation and the explained fraction of systematic variation. The Cumulative Residuals Method was also used to test the adequacy of a regression model throughout the range of each variable. The candidate set of explanatory variables was: length (L), curvature (1/R), annual average daily traffic (AADT), sight distance (SD), side friction coefficient (SFC), longitudinal slope (LS) and the presence of a junction (J). Separate prediction models for total crashes and for fatal and injury crashes only were considered. For curves it is shown that significant variables are L, 1/R and AADT, whereas for tangents they are L, AADT and junctions. The effect of rain precipitation was analysed on the basis of hourly rainfall data and assumptions about drying time. It is shown that a wet pavement significantly increases the number of crashes. The models developed in this paper for Italian motorways appear to be useful for many applications such as the detection of critical factors, the estimation of accident reduction due to infrastructure and pavement improvement, and the predictions of accidents counts when comparing different design options. Thus this research may represent a point of reference for engineers in adjusting or designing multilane roads.  相似文献   

12.
In this study it was endeavored to predict full green and green arrow accidents at traffic lights, using configuration-specific features. This was done using the statistical method known as Poisson regression. A total of 45 sets of traffic lights (criteria: in an urban area, with four approach roads) with 178 approach roads were investigated (the data from two approach roads was unable to be used). Configuration-specific features were surveyed on all approach roads (characteristics of traffic lanes, road signs, traffic lights, etc.), traffic monitored and accidents (full green and green arrow) recorded over a period of 5 consecutive years. It was demonstrated that only between 23 and 34% of variance could be explained with the models predicting both types of accidents. In green arrow accidents, the approach road topography was found to be the major contributory factor to an accident: if the approach road slopes downwards, the risk of a green arrow accident is approximately five and a half times greater (relative risk, RR = 5.56) than on a level or upward sloping approach road. With full green accidents, obstructed vision plays the major role: where vision can be obstructed by vehicles turning off, the accident risk is eight times greater (RR = 8.08) than where no comparable obstructed vision is possible. From the study it emerges that technical features of traffic lights are not able to control a driver's actions in such a way as to eradicate error. Other factors, in particular the personal characteristics of the driver (age, sex, etc.) and accident circumstances (lighting, road conditions, etc.), are likely to make an important contribution to explaining how an accident occurs.  相似文献   

13.
Collisions between bicycles and motor vehicles have caused severe life and property losses in many countries. The majority of bicycle-motor vehicle (BMV) accidents occur at intersections. In order to reduce the number of BMV accidents at intersections, a substantial understanding of the causal factors for the collisions is required. In this study, intersection BMV accidents were classified into three types based on the movements of the involved motor vehicles and bicycles. The three BMV accident classifications were through motor vehicle related collisions, left-turn motor vehicle related collisions, and right-turn motor vehicle related collisions. A methodology for estimating these BMV accident risks was developed based on probability theory. A significant difference between this proposed methodology and most current approaches is that the proposed approach explicitly relates the risk of each specific BMV accident type to its related flows. The methodology was demonstrated using a 4-year (1992-1995) data set collected from 115 signalized intersections in the Tokyo Metropolitan area. This data set contains BMV accident data, bicycle flow data, motor vehicle flow data, traffic control data, and geometric data for each intersection approach. For each BMV risk model, an independent explanatory variable set was chosen according to the characteristics of the accident type. Three negative binomial regression models (one corresponding to each BMV accident type) were estimated using the maximum likelihood method. The coefficient value and its significance level were estimated for each selected variable. The negative binomial dispersion parameters for all the three models were significant at 0.01 levels. This supported the choice of the negative binomial regression over the Poisson regression for the quantitative analyses in this study.  相似文献   

14.
Young drivers (18–24) both in Greece and elsewhere appear to have high rates of road traffic accidents. Many factors contribute to the creation of these high road traffic accidents rates. It has been suggested that lifestyle is an important one. The main objective of this study is to find out and clarify the (potential) relationship between young drivers’ lifestyle and the road traffic accident risk they face. Moreover, to examine if all the youngsters have the same elevated risk on the road or not. The sample consisted of 241 young Greek drivers of both sexes. The statistical analysis included factor analysis and logistic regression analysis. Through the principal component analysis a ten factor scale was created which included the basic lifestyle traits of young Greek drivers. The logistic regression analysis showed that the young drivers whose dominant lifestyle trait is alcohol consumption or drive without destination have high accident risk, while these whose dominant lifestyle trait is culture, face low accident risk. Furthermore, young drivers who are religious in one way or another seem to have low accident risk. Finally, some preliminary observations on how health promotion should be put into practice are discussed.  相似文献   

15.
To determine the individual circumstances that account for a road traffic accident, it is crucial to consider the unplanned connections amongst various factors related to a crash that results in high casualty levels. Analysis of the road accident data concentrated mainly on categorizing accidents into different types using individually built classification methods which limit the prediction accuracy and fitness of the model. In this article, we proposed a multi-model hybrid framework of the weighted majority voting (WMV) scheme with parallel structure, which is designed by integrating individually implemented multinomial logistic regression (MLR) and multilayer perceptron (MLP) classifiers using three different accident datasets i.e., IRTAD, NCDB, and FARS. The proposed WMV hybrid scheme overtook individual classifiers in terms of modern evaluation measures like ROC, RMSE, Kappa rate, classification accuracy, and performs better than state-of-the-art approaches for the prediction of casualty severity level. Moreover, the proposed WMV hybrid scheme adds up to accident severity analysis through knowledge representation by revealing the role of different accident-related factors which expand the risk of casualty in a road crash. Critical aspects related to casualty severity recognized by the proposed WMV hybrid approach can surely support the traffic enforcement agencies to develop better road safety plans and ultimately save lives.  相似文献   

16.
A retrospective cross-sectional study is conducted analysing 11,771 traffic accidents reported by the police between January 2008 and December 2013 which are classified into three injury severity categories: fatal, injury, and no injury. Based on this classification, a multinomial logit analysis is performed to determine the risk factors affecting the severity of traffic injuries. The estimation results reveal that the following factors increase the probability of fatal injuries: drivers over the age of 65; primary-educated drivers; single-vehicle accidents; accidents occurring on state routes, highways or provincial roads; and the presence of pedestrian crosswalks. The results also indicate that accidents involving cars or private vehicles or those occurring during the evening peak, under clear weather conditions, on local city streets or in the presence of traffic lights decrease the probability of fatal injuries. This study comprises the most comprehensive database ever created for a Turkish sample. This study is also the first attempt to use an unordered response model to determine risk factors influencing the severity of traffic injuries in Turkey.  相似文献   

17.
Traffic accident data are often heterogeneous, which can cause certain relationships to remain hidden. Therefore, traffic accident analysis is often performed on a small subset of traffic accidents or several models are built for various traffic accident types. In this paper, we examine the effectiveness of a clustering technique, i.e. latent class clustering, for identifying homogenous traffic accident types. Firstly, a heterogeneous traffic accident data set is segmented into seven clusters, which are translated into seven traffic accident types. Secondly, injury analysis is performed for each cluster. The results of these cluster-based analyses are compared with the results of a full-data analysis. This shows that applying latent class clustering as a preliminary analysis can reveal hidden relationships and can help the domain expert or traffic safety researcher to segment traffic accidents.  相似文献   

18.
Traffic incident duration is known to result from a combination of multiple factors, including covariates such as spatial and temporal characteristics, traffic conditions, and existence of secondary accidents but also the clearance method itself. In this paper, a competing risks mixture model is used to investigate the influence of clearance methods and various covariates on the duration of traffic incidents and predict traffic incident duration. The proposed mixture model considers the uncertainty in any of five clearance methods that occurred. The probability of the clearance method is specified in the mixture by using a multinomial logistic model. Three candidate distributions, namely, generalized gamma, Weibull, and log-logistic are tested to determine the most appropriate probability density function of the parametric survival analysis model. The unobserved heterogeneity is also incorporated into the mixture model in a way that allows parameters to vary across observations based on the three candidate distributions. The methods are illustrated with incident data from Singaporean expressways from January 2010 to December 2011. Regression analysis reveals that the probability of different clearance methods and the duration of traffic incidents are both significantly affected by various factors, such as traffic conditions and incident characteristics. Results show that the proposed mixture model is better than the traditional accelerated failure time model, and it predicts traffic incident duration with reasonable accuracy, as shown by the mean average percent error.  相似文献   

19.
Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an ‘integrated database’ is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.  相似文献   

20.
Traffic accidents data sets are usually imbalanced, where the number of instances classified under the killed or severe injuries class (minority) is much lower than those classified under the slight injuries class (majority). This, however, supposes a challenging problem for classification algorithms and may cause obtaining a model that well cover the slight injuries instances whereas the killed or severe injuries instances are misclassified frequently. Based on traffic accidents data collected on urban and suburban roads in Jordan for three years (2009–2011); three different data balancing techniques were used: under-sampling which removes some instances of the majority class, oversampling which creates new instances of the minority class and a mix technique that combines both. In addition, different Bayes classifiers were compared for the different imbalanced and balanced data sets: Averaged One-Dependence Estimators, Weightily Average One-Dependence Estimators, and Bayesian networks in order to identify factors that affect the severity of an accident. The results indicated that using the balanced data sets, especially those created using oversampling techniques, with Bayesian networks improved classifying a traffic accident according to its severity and reduced the misclassification of killed and severe injuries instances. On the other hand, the following variables were found to contribute to the occurrence of a killed causality or a severe injury in a traffic accident: number of vehicles involved, accident pattern, number of directions, accident type, lighting, surface condition, and speed limit. This work, to the knowledge of the authors, is the first that aims at analyzing historical data records for traffic accidents occurring in Jordan and the first to apply balancing techniques to analyze injury severity of traffic accidents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号