首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
董琳  赵怀勋 《电子设计工程》2011,19(20):113-117
文中利用目标加速度运动位移方程,预测下一时刻目标可能移动的位置,使用预测位置误差方程,估测运动目标搜索范围,并且通过启动多个Camshift跟踪器的方法,改进Camshift算法。仿真实验表明,该方法有效地克服了Camshift算法自身的缺陷,即使是加速运动的目标,也可准确地预测运动目标的位置,并且有效提高了对遮挡目标跟踪和多个人脸目标跟踪的鲁棒性。  相似文献   

2.
设计了一个基于Camshift算法的摄像机对目标的实时跟踪系统。应用该算法检测到每帧图像中目标的尺寸和中心位置,得到的数据通过串口控制云台的转动,使目标物体始终在摄像头的视场范围内,以实现摄像机对目标的同步跟踪。系统运行结果表明,当运动目标的距离和速度在一定的范围内时,能够实现实时跟踪。  相似文献   

3.
经典的连续自适应均值漂移算法Camshift通过HSV空间的色调Hue分量建立一维直方图,在有光照变化及有相似颜色目标或背景的干扰下,跟踪效果不好。提出一种融合HSV空间中色调、饱和度以及反应物体形状信息的边缘梯度的三维直方图特征,并基于背景模型自适应调整特征直方图三种分量的权重值,提高了算法的跟踪准确度。通过与传统Camshift跟踪实验比较,提出的改进算法在光照变化及相似颜色目标/背景干扰下具有更好的鲁棒性,同样也满足跟踪系统的实时性要求。  相似文献   

4.
王立玲  单忠宇  马东  王洪瑞 《半导体光电》2020,41(6):896-901, 906
针对Camshift算法应用于NAO机器人目标跟踪过程中,当目标受到相似颜色背景干扰或被物体遮挡时跟踪失败的问题,提出一种基于ORB特征检测和Kalman滤波多算法结合的目标跟踪方法。首先检测目标ORB特征点初始化搜索窗口,然后利用Kalman滤波作为目标运动状态的预测机制,以预测的位置初始化Camshift算法。利用Bhattacharyya距离判断跟踪窗口的收敛性,若受到背景干扰,则利用ORB算法对当前帧中的Kalman预测区域和目标模型进行特征点匹配,重新检测目标在视频帧中的位置。根据Kalman滤波预测目标被物体遮挡后可能的位置来更新预测器参数。实验结果表明,改进的算法能够在相似颜色背景干扰和目标遮挡的复杂环境下,连续稳定地跟踪运动目标。  相似文献   

5.
针对目标姿态变化和遮挡下的目标实时跟踪问题,提出了一种基于卡尔曼滤波运动估计的Camshift的人脸跟踪方法.将图像的RGB空间转换成HSV空间,建立H分量直方图,找出H分量像素点并建立颜色概率表,从而实现图像的反向投影;同时引入卡尔曼滤波算法解决目标跟踪过程中的非线性变化和目标遮挡问题.实验结果显示,该算法能有效解决...  相似文献   

6.
基于Kalman滤波器运动目标跟踪的火灾监测方法   总被引:1,自引:0,他引:1  
杨冰  张为  王猛 《信息技术》2013,(7):101-105
针对目前通常采用的火焰信息特征检测方法无法有效排除环境变化产生的干扰,特别是光线变化易引发实时火灾监控出现误检的问题,提出了一种基于Kalman滤波器运动跟踪算法的火焰检测方法,同时利用颜色、圆形度等特征和信息进一步确认火灾。不同干扰条件下的测试结果表明,利用文中提出的算法进行火灾识别判断,具有响应时间短,抗干扰性强等优点,可满足实际使用需求。  相似文献   

7.
如何实现移动目标被其他物体遮挡后,预测其所处位置,并能够实现遮挡结束后恢复目标的跟踪是视频目标检测与跟踪研究方面的一个热点问题。文章将Kalman滤波器对目标位置估计能力与Meanshift跟踪算法相互结合实现视频序列中移动目标检测与跟踪。利用遮挡因子对目标进行遮挡判断,如果没有发生遮挡则使用Meanshift算法进行直接目标跟踪,一旦检测出遮挡则利用Kalman的预测值进行目标新位置的确定,最终实现对运动目标进行跟踪,并通过MATLAB编写程序实现对运动目标的检测与跟踪。  相似文献   

8.
9.
基于Kalman滤波原理的运动目标跟踪   总被引:1,自引:0,他引:1  
应用Kalman滤波原理,对运动目标进行跟踪,缩小目标的搜索范围,实现快速实时跟踪,使跟踪更为准确.理论分析和实验结果表明,该算法与常规的模板匹配法、直方图模板匹配法等算法相比,有效地提高了目标跟踪的速度及跟踪的准确性.该算法对运动目标进行跟踪,运行速度可提高三倍.  相似文献   

10.
为了解决单特征在目标跟踪中无法准确描述目标的问题,提出了一种多特征融合的实时目标跟踪方法。该方法将角点特征、轮廓特征融入传统的Camshift算法中,结合原有的颜色特征对目标进行描述。解决了传统算法易受同色物体干扰,抗遮挡性能差等问题。实验结果表明,该方法能够实现对目标的实时跟踪,当目标遮挡的时间较短时能够很好地识别目标,具有较高的鲁棒性。  相似文献   

11.
王玲玲  裴东  王全州 《激光与红外》2015,45(10):1266-1271
鉴于连续自适应均值漂移(Camshift)算法在光照变化,相似背景颜色干扰及目标遮挡时鲁棒性不高,易造成跟踪错误等问题,提出了一种联合多特征和最大类间方差法的视频运动目标跟踪算法。该算法将色度直方图、梯度方向直方图和LBP纹理特征进行巧妙的融合,构建了一种高效的联合直方图目标外观特征模型,并在Camshift算法中嵌入最大类间方差法,增强目标和背景的区分度。不同场景的视频跟踪结果表明,改进算法有效克服了传统Camshift算法应对光照变化、颜色干扰和目标遮挡的缺点,与同类算法相比,具有更高的准确度和鲁棒性。  相似文献   

12.
目标跟踪理论在国防、商用等领域都具有重要价值,并且是实现智能交通系统的基础。针对智能交通系统中需要对特定的运动目标进行跟踪和监测的要求,利用卡尔曼滤波算法对目标进行跟踪并对其下一时间的运动位置、运动方向、速度等信息进行预先估算以达到及时监测的目的。通过分别对机动目标和非机动目标的仿真试验,得出了卡尔曼滤波算法可以对运动的目标实现实时跟踪,且非机动目标的跟踪效果要优于机动目标的结论。  相似文献   

13.
针对复杂背景下多运动目标的跟踪方法不能有效解决遮挡和高速运动等问题,提出一种Kalman预测与点模式匹配相结合的多目标跟踪方法。利用Kalman滤波预测目标在下一帧图像中的位置,以此位置为中心确定目标搜索区域,然后以点模式匹配进行搜索区域和目标模板进行匹配,有效地解决目标的旋转和轻微的遮挡问题。为了提高匹配速度和实时性,在点模式匹配中利用Kalman滤波对目标旋转角度的预测与修正;同时为了保证跟踪的鲁棒性、连续性及准确性,对目标模板的更新采用置信度二级判决门限。实验表明该方法具有较好的实时性,并能够有效地解决遮挡等问题。  相似文献   

14.
《现代电子技术》2018,(2):21-25
在实现高精确度和快速的目标跟踪过程中,相关滤波是一个非常好的选择,但是目前所有的相关滤波跟踪方法仍然无法解决遮挡和光照变化等因素造成的干扰。因此,在传统核相关滤波器(KCF)的基础上,提出多特征图核相关滤波器(MKCF)的目标快速跟踪方法。首先,由初始化目标区域生成多个特征图,并通过对正则化最小二乘(RLS)分类器学习获得位置和尺度核相关滤波器(KCF);然后,随机选取一个特征图,寻找位置和尺度KCF输出响应的最大值,完成目标位置和尺度的检测;最后,随机选择需要在线更新的目标模型。经过试验测试,对比KCF,MKCF的平均中心位置误差(CLE)减少了5像素,平均成功率(SR)提高了10.9%,平均距离精度提高了6.7%;MKCF在目标发生尺度变化、光照变化、形态变化、目标遮挡、轻度旋转及快速运动等复杂情况下均有较强的适应性,具有重要的理论和应用研究价值。  相似文献   

15.
基于改进的Camshift运动目标跟踪算法的研究   总被引:1,自引:0,他引:1  
针对基于颜色概率分布的连续自适应均值漂移算法(Camshift)跟踪算法在背景中出现相同颜色干扰时容易致使跟踪目标失败的问题,提出了一种改进的Camshift跟踪算法。首先对Camshift跟踪目标前进行目标检测,通过帧差法、光流法、背景差分法三种检测算法对比,采用背景差分法得到的运动目标区域矩形特征参数作为Camshift的初始化参数,取代一般Camshift算法利用颜色特征的跟踪。最后对改进的算法和一般Camshift进行仿真对比实验。实验结果表明,结合背景差分法和连续Camshift算法的运动目标跟踪在一定程度上满足了实时性与稳定性的要求。  相似文献   

16.
卡尔曼滤波在目标跟踪中的研究与应用   总被引:2,自引:1,他引:2  
刘静  姜恒  石晓原 《信息技术》2011,(10):174-177
卡尔曼滤波算法是现阶段雷达信号处理中最常用的跟踪算法,结合雷达跟踪的空中目标的实际情况,针对目标运动模型中的线性运动和非线性运动模型,分别设计了两种模型,并利用马尔可夫状态转移矩阵实现交互多模算法。最后对交互多模型卡尔曼滤波算法进行了Matlab仿真及结果分析。  相似文献   

17.
针对人脸目标的遮挡大角度倾斜和旋转状态下的目标跟踪丢失问题,提出了一种时间回溯的人脸跟踪方法。以Haar特征检测和改进Camshift算法为基础,在Haar分类器中引入时间变量,实现回溯;在概率密度图像中引入变加权直方图模型,加大了人脸区域的权重,并辅以光照补偿、椭圆模板匹配等方法。实验表明,本文算法能够有效克服遮挡问...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号