共查询到17条相似文献,搜索用时 218 毫秒
1.
文中利用目标加速度运动位移方程,预测下一时刻目标可能移动的位置,使用预测位置误差方程,估测运动目标搜索范围,并且通过启动多个Camshift跟踪器的方法,改进Camshift算法。仿真实验表明,该方法有效地克服了Camshift算法自身的缺陷,即使是加速运动的目标,也可准确地预测运动目标的位置,并且有效提高了对遮挡目标跟踪和多个人脸目标跟踪的鲁棒性。 相似文献
2.
3.
4.
针对Camshift算法应用于NAO机器人目标跟踪过程中,当目标受到相似颜色背景干扰或被物体遮挡时跟踪失败的问题,提出一种基于ORB特征检测和Kalman滤波多算法结合的目标跟踪方法。首先检测目标ORB特征点初始化搜索窗口,然后利用Kalman滤波作为目标运动状态的预测机制,以预测的位置初始化Camshift算法。利用Bhattacharyya距离判断跟踪窗口的收敛性,若受到背景干扰,则利用ORB算法对当前帧中的Kalman预测区域和目标模型进行特征点匹配,重新检测目标在视频帧中的位置。根据Kalman滤波预测目标被物体遮挡后可能的位置来更新预测器参数。实验结果表明,改进的算法能够在相似颜色背景干扰和目标遮挡的复杂环境下,连续稳定地跟踪运动目标。 相似文献
5.
针对目标姿态变化和遮挡下的目标实时跟踪问题,提出了一种基于卡尔曼滤波运动估计的Camshift的人脸跟踪方法.将图像的RGB空间转换成HSV空间,建立H分量直方图,找出H分量像素点并建立颜色概率表,从而实现图像的反向投影;同时引入卡尔曼滤波算法解决目标跟踪过程中的非线性变化和目标遮挡问题.实验结果显示,该算法能有效解决... 相似文献
6.
7.
8.
9.
基于Kalman滤波原理的运动目标跟踪 总被引:1,自引:0,他引:1
应用Kalman滤波原理,对运动目标进行跟踪,缩小目标的搜索范围,实现快速实时跟踪,使跟踪更为准确.理论分析和实验结果表明,该算法与常规的模板匹配法、直方图模板匹配法等算法相比,有效地提高了目标跟踪的速度及跟踪的准确性.该算法对运动目标进行跟踪,运行速度可提高三倍. 相似文献
10.
为了解决单特征在目标跟踪中无法准确描述目标的问题,提出了一种多特征融合的实时目标跟踪方法。该方法将角点特征、轮廓特征融入传统的Camshift算法中,结合原有的颜色特征对目标进行描述。解决了传统算法易受同色物体干扰,抗遮挡性能差等问题。实验结果表明,该方法能够实现对目标的实时跟踪,当目标遮挡的时间较短时能够很好地识别目标,具有较高的鲁棒性。 相似文献
11.
鉴于连续自适应均值漂移(Camshift)算法在光照变化,相似背景颜色干扰及目标遮挡时鲁棒性不高,易造成跟踪错误等问题,提出了一种联合多特征和最大类间方差法的视频运动目标跟踪算法。该算法将色度直方图、梯度方向直方图和LBP纹理特征进行巧妙的融合,构建了一种高效的联合直方图目标外观特征模型,并在Camshift算法中嵌入最大类间方差法,增强目标和背景的区分度。不同场景的视频跟踪结果表明,改进算法有效克服了传统Camshift算法应对光照变化、颜色干扰和目标遮挡的缺点,与同类算法相比,具有更高的准确度和鲁棒性。 相似文献
12.
目标跟踪理论在国防、商用等领域都具有重要价值,并且是实现智能交通系统的基础。针对智能交通系统中需要对特定的运动目标进行跟踪和监测的要求,利用卡尔曼滤波算法对目标进行跟踪并对其下一时间的运动位置、运动方向、速度等信息进行预先估算以达到及时监测的目的。通过分别对机动目标和非机动目标的仿真试验,得出了卡尔曼滤波算法可以对运动的目标实现实时跟踪,且非机动目标的跟踪效果要优于机动目标的结论。 相似文献
13.
针对复杂背景下多运动目标的跟踪方法不能有效解决遮挡和高速运动等问题,提出一种Kalman预测与点模式匹配相结合的多目标跟踪方法。利用Kalman滤波预测目标在下一帧图像中的位置,以此位置为中心确定目标搜索区域,然后以点模式匹配进行搜索区域和目标模板进行匹配,有效地解决目标的旋转和轻微的遮挡问题。为了提高匹配速度和实时性,在点模式匹配中利用Kalman滤波对目标旋转角度的预测与修正;同时为了保证跟踪的鲁棒性、连续性及准确性,对目标模板的更新采用置信度二级判决门限。实验表明该方法具有较好的实时性,并能够有效地解决遮挡等问题。 相似文献
14.
《现代电子技术》2018,(2):21-25
在实现高精确度和快速的目标跟踪过程中,相关滤波是一个非常好的选择,但是目前所有的相关滤波跟踪方法仍然无法解决遮挡和光照变化等因素造成的干扰。因此,在传统核相关滤波器(KCF)的基础上,提出多特征图核相关滤波器(MKCF)的目标快速跟踪方法。首先,由初始化目标区域生成多个特征图,并通过对正则化最小二乘(RLS)分类器学习获得位置和尺度核相关滤波器(KCF);然后,随机选取一个特征图,寻找位置和尺度KCF输出响应的最大值,完成目标位置和尺度的检测;最后,随机选择需要在线更新的目标模型。经过试验测试,对比KCF,MKCF的平均中心位置误差(CLE)减少了5像素,平均成功率(SR)提高了10.9%,平均距离精度提高了6.7%;MKCF在目标发生尺度变化、光照变化、形态变化、目标遮挡、轻度旋转及快速运动等复杂情况下均有较强的适应性,具有重要的理论和应用研究价值。 相似文献
15.
基于改进的Camshift运动目标跟踪算法的研究 总被引:1,自引:0,他引:1
针对基于颜色概率分布的连续自适应均值漂移算法(Camshift)跟踪算法在背景中出现相同颜色干扰时容易致使跟踪目标失败的问题,提出了一种改进的Camshift跟踪算法。首先对Camshift跟踪目标前进行目标检测,通过帧差法、光流法、背景差分法三种检测算法对比,采用背景差分法得到的运动目标区域矩形特征参数作为Camshift的初始化参数,取代一般Camshift算法利用颜色特征的跟踪。最后对改进的算法和一般Camshift进行仿真对比实验。实验结果表明,结合背景差分法和连续Camshift算法的运动目标跟踪在一定程度上满足了实时性与稳定性的要求。 相似文献
16.