共查询到20条相似文献,搜索用时 125 毫秒
1.
通过记录每日每地每时的交通流量,可生成统计数据,进而可形成有效高,时效性强的神经网络训练集,通过使用基本的BP神经网络方法,可利用训练集的数据来预测将来所需要的某时的交通流量大小。通过发布交通流预测信息于市民,可令有出行计划的市民更好地规划出行方式、路线并有效缓解各地交通压力过大情况。此方法可用价值高。本文具体分析了城市交通流量特征,在此基础上建立了基于BP神经网络的交通流量预测模型,并应用实际交通流量数据对预测模型进行了验证,得出结论:BP神经网络预测精度较高。 相似文献
2.
随着交通基础设施建设和智能运输系统的发展,交通规划和交通诱导成为交通领域的研究热点,对交通规划和交通诱导而言,准确的交通流量预测是其实现的前提和关键。短时交通流量预测是一个时间序列预测问题,文中应用小波神经网络对短时交通流量进行了预测。首先,对神经网络、小波分析等相关理论进行了简要介绍。在此基础上,采用5-7-1小波神经网络结构,以Morlet小波基函数作为隐含层节点的传递函数,将车流量数据输入该模型中,以训练小波神经网络,并用训练好的神经网络来预测短时交通流量。从预测结果来看,小波神经网络的预测结果较为准确,网络预测值接近期望值,效果较好。 相似文献
3.
改进的BP神经网络在交通流量预测中应用 总被引:2,自引:0,他引:2
针对传统BP学习算法收敛速度慢,对步长依赖明显等缺点,提出一种利用搜索较优步长的BP算法.在网络训练中,能够在每次迭代中搜索出一个相对合理的步长,从而使步长的选择对学习速度的影响大大降低.对交通流量预测仿真结果表明,新算法对步长选择的依赖性小于传统BP算法. 相似文献
4.
5.
车流量建模是车联网(vehicular Ad Hoc network,VANET)路由、多媒体接入协议、无线算法设计的基础.准确的车流量模型将对智能交通系统(intelligent transportation system,ITS)实时调度和车联网的信息安全起到十分重要的作用.基于上海市的交通流量数据,利用自回归(auto regressive,AR)模型与神经(back-propagation,BP)网络模型对车流量实测数据进行了仿真对比,给出了相应的预测结果.研究发现,两个模型均能有效地对数据进行跟踪与预测,但对不同时段数据预测的准确性有所不同.研究结果将为未来智能交通应用、车联网的理论研究等提供有力依据. 相似文献
6.
随着城市化进程的加速,智能交通系统的需求也日益增长,其中预测交通流量尤为关键。为了更准确地预测交通流量,文章提出一种新的方法。该方法首先利用图生成模块来生成一个图结构,然后结合时间卷积、图卷积和门控线性单元构建的时空块,深入捕获了交通流的时空特征。为了评估文章所提方法的准确性和实用性,文章选择PEMS数据集进行实验。实验结果证明了文章所提模型在性能上优于对比方法。 相似文献
7.
8.
为了提高交通流量预测数据的准确度,文中利用神经网络算法提出一种短时交通流量的预测模型。通过分析交通流量的概念和特征,设计相应的预测评价体系,使用拉格朗日中值定理与小波变换,实现交通流量数据的插值、降噪和归一化。基于改进的神经网络算法,建立和优化相应的预测数学模型。在评价体系的基础上,完成预测结果的计算与评估。仿真测试结果表明,改进神经网络算法的应用有效降低了预测结果的误差,提高了交通流量预测模型计算的准确度。 相似文献
9.
10.
11.
旅游业和网络时代高速发展,导致旅游信息过载问题日益严重,旅游推荐方法对解决信息过载问题十分重要。传统推荐算法只针对用户和项目之间的评分和基本属性计算相似度进行推荐,但行为需求及具有游客情感因素的评论却被忽视。本文利用卷积神经网络(CNN)对文本评论特征提取进行情感分类,用皮尔逊相似度公式计算相似的用户群体,用平均绝对误差(MAE)对结果误差进行评价。与传统的协同过滤方法进行对比,本文提出的模型能有效降低预测误差。 相似文献
12.
13.
Traffic sign recognition (TSR) is an important component of automated driving systems. It is a rather challenging task to design a high-performance classifier for the TSR system. In this paper, we propose a new method for TSR system based on deep convolutional neural network. In order to enhance the expression of the network, a novel structure (dubbed block-layer below) which combines network-in-network and residual connection is designed. Our network has 10 layers with parameters (block-layer seen as a single layer): the first seven are alternate convolutional layers and block-layers, and the remaining three are fully-connected layers. We train our TSR network on the German traffic sign recognition benchmark (GTSRB) dataset. To reduce overfitting, we perform data augmentation on the training images and employ a regularization method named “dropout”. The activation function we employ in our network adopts scaled exponential linear units (SELUs), which can induce self-normalizing properties. To speed up the training, we use an efficient GPU to accelerate the convolutional operation. On the test dataset of GTSRB, we achieve the accuracy rate of 99.67%, exceed-ing the state-of-the-art results. 相似文献
14.
15.
We considered the prediction of driver's cognitive states related to driving performance using EEG signals. We proposed a novel channel-wise convolutional neural network (CCNN) whose architecture considers the unique characteristics of EEG data. We also discussed CCNN-R, a CCNN variation that uses Restricted Boltzmann Machine to replace the convolutional filter, and derived the detailed algorithm. To test the performance of CCNN and CCNN-R, we assembled a large EEG dataset from 3 studies of driver fatigue that includes samples from 37 subjects. Using this dataset, we investigated the new CCNN and CCNN-R on raw EEG data and also Independent Component Analysis (ICA) decomposition. We tested both within-subject and cross-subject predictions and the results showed CCNN and CCNN-R achieved robust and improved performance over conventional DNN and CNN as well as other non-DL algorithms. 相似文献
16.
事件预测需要综合考虑的要素众多,现有预测模型多数存在数据稀疏、事件的组合特征及时序特征考虑不足、预测类型单一等问题。为此,提出了基于关系图卷积神经网络的多标签事件预测方法,通过节点特征聚合技术实现数据的稠密化表示。模型利用卷积神经网络的卷积和池化运算,提取预测数据的组合时间段特征信息,并结合长短期记忆网络的时序特征提取能力,进一步提取预测数据的时序规律特征;最后,模型通过全连接的多标签分类器,输出多种类型事件发生的概率值。实验结果表明,所提模型可以支持进行多日期、多类型事件预测,在特定数据集上最高F1值可以达到0.85。 相似文献
17.
针对现有网络隐写分析算法特征提取难度大、算法适用范围单一的问题,文章提出了一种基于卷积神经网络的网络隐写分析方法。对网络数据流进行预处理,将所有数据包处理成大小相同的矩阵,最大限度地保留数据特征完整性;使用异构卷积进行特征提取,减少模型计算量及参数数量,加快模型收敛速度;取消池化层,提高模型训练效率。与传统网络隐写分析方法相比,模型能够自动提取数据特征,识别多种网络隐写算法。 相似文献
18.
《现代电子技术》2016,(10):30-33
考虑到无线网络流量具有极强的分散性、随机性以及混沌等特性,使用传统的ARIMA预测模型和BP神经网络模型难以对其进行精确的预测等,该文使用粒子群优化算法对BP神经网络预测模型进行优化以解决BP神经网络容易陷入局部最小值以及训练收敛速率低等问题,引入遗传算法中的自适应变异因子来以一定概率初始化部分变量解决粒子群优化算法会出现陷入局部最优解以及早熟收敛等问题。最后使用经典的CRAWDAD数据库中的无线网络流量数据对该文预测方法性能进行测试,使用稳定小波变换方法将无线网络流量数据分解,得到由1个近似分量以及3个细节分量组成的数据流。测试结果表明,该预测算法在预测性能上要优于ARIMA预测模型和BP神经网络模型。 相似文献
19.
In order to improve the semantic segmentation accuracy of traffic scene,a segmentation method was proposed based on RGB-D image and convolutional neural network.Firstly,on the basis of semi-global stereo matching algorithm,the disparity map was obtained,and the sample library was established by fusing the disparity map D and RGB image into the four-channel RGB-D image.Then,with two different structures,the networks were trained by using two different learning rate adjustment strategy respectively.Finally,the traffic scene semantic segmentation test was carried out with RGB-D image as the input,and the results were compared with the segmentation method based on RGB image.The experimental results show that the proposed traffic scene segmentation algorithm based on RGB-D image can achieve higher semantic segmentation accuracy than that based on RGB image. 相似文献
20.
道路交通标志在指导安全出行方面起了重要作用,随着智能交通的发展,交通标志识别越来越受到重视.不同光照、雾气下的复杂自然场景(如树林、建筑物)对交通标志识别干扰较大,为减少这些无关干扰因素所带来的识别率不高的问题,提出了一种语义分割网络与分类网络级联的交通标志识别方法.语义分割网络由UNet改进得到,利用了交通标志与背景... 相似文献