首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The structure of isotactic polypropylene, obtained by means of Ziegler-Natta catalysis, can be characterized only by molecular weight distribution. The mechanism of stereospecific catalysis eliminates other variables, i.e., short and long branching. In this case it is possible to develop a rheological study dependent only by polydispersity. The spectrum of relaxation times of five samples of polypropylene have been calculated from swelling measurement in the molten state and from flow master curves. The molecular weight distribution of the samples has been calculated by means of the relaxation spectrum, as suggested by Ferry. This information has been compared with that obtained by a fractionation method. There is a good agreement between the calculated and measured polydispersity curves.  相似文献   

2.
The effect of molecular weight blending on melt flow characteristics has been studied with a 50/50 mixture of suspension PVC resins with the respective M w of 56,300 and 123,000. The dynamic shear measurements were made with the Rheometrics Visco-Elastic Tester at angular frequencies of 0.1 to 40 radians/s. In the temperature range of 160 to 215° C, all samples showed three distinct flow regions marked by three different values of the activation energy. The high molecular weight fraction introduced a relatively strong influence on the melt flow characteristics of the blend due to the effect of its relatively high crystalline content. These samples also failed to show a Newtonian flow behavior at 190°C at an extremely low shear rate corresponding to 10?4 radians/s., possibly reflecting the effect of the remnant crystallinity of the material.  相似文献   

3.
The flow behaviors of a series of polyvinylchloride (PVC) resins covering a broad range of molecular weight have been examined at several temperatures. It has been shown that the influence of temperature on viscosity depends on the temperature range. That is, the flow activation energy is not constant but can be approximated by two values, one applicable to low temperatures, the other to high temperatures. The flow activation energy based on viscosities at constant shear rate decreases as the molecular weight increases. In contrast, the flow activation energy from viscosities at constant shear stress increases with molecular weight. The fact that the activation energy is dual valued does not seem to be associated with the polymer type. Both emulsion and suspension resins exhibit this behavior. Addition of certain modifiers appears to alter the activation energy at lower temperatures. These observations indicate that the shift in the activation energy in the low temperature range is due to a change in the flow mechanism.  相似文献   

4.
A major objective in polymer rheology is to predict a fluid's response to a general deformation from molecular information. A method has been developed which allows one to predict the viscoelastic properties of polymer melts from a limited amount of rheological and molecular data for the polymer. The input parameters are: (a) zero-shear viscosity; (b) molecular weight distribution; (c) temperature and density; and (d) constants relating Graessley's relaxation time to the Rouse relaxation time. The technique then “simulates” a discrete relaxation spectrum using G′ and G″ data from the Rouse theory and finally requires that a continuum model of polymer viscoelasticity be fit to shear viscosity data predicted by Graessley's theory. Examples of the utility of the procedure are given to illustrate the role of molecular weight and weight distribution in determining rheological behavior.  相似文献   

5.
聚丙烯熔体流动指数与分子量及其分布的关系   总被引:2,自引:2,他引:0  
研究了聚丙烯(PP)的熔体流动指数(MI)与聚合物不同分子量之间的关联性,对于分子量分布较窄的PP,数均分子量(Mn)、重均分子量(Mw)和粘均分子量(Mv)均能较好的关联;反之,MI与Mn关联性下降,而MI与Mn和Mv的关联性仍很好,尤其是MI与Mv的关联性受分子量分布的影响很小;MI与Z均分子量的关联性很差。同时.确定了MI与各种分子量之间的关联式,该式用于本体PP工艺反应器内氢气浓度的计算和MI的预测,与实验测量结果吻合良好。  相似文献   

6.
Direct melt compounding was used to prepare nanocomposites of organophilic montmorillonite (o‐mmt) clay dispersed in maleated polypropylenes (PPgMA) as well as nanocomposites of organoclay and polypropylene (PP) modified with various grades of PPgMA compatibilizers. The thermal effect on the rheology and melt compounding was first investigated with a plasticorder. The shear viscosities and the melt flow indices (MFI) of the PPgMA compatibilizers were sensitive to the blending temperature, which had to be varied with the compatibilizer grade to achieve desirable level of torque for extensive exfoliation of organoclay in the plasticorder. However, for low molecular weight oligomer, the clay dispersion was poor because of low shear viscosity and thermal instability. Next, the PPgMA‐modified PP/organoclay nanocomposites were prepared on a corotating twin‐screw extruder. The nanoscale dimensions of the dispersed clay platelets led to significantly increased linear viscoelastic properties, which were qualitatively correlated with the state of exfoliation in the nanocomposites. The relative viscosity (relative to the silicate‐free matrix) curves revealed a systematic trend with the extent of clay exfoliation. Furthermore, the degree of clay dispersion was found to increase with the loading of compatibilizers; however, high loading of compatibilizer compromised the final moduli of the nanocomposites. POLYM. ENG. SCI. 46:289–302, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
A mathematical model for the controlled degradation of polypropylene is presented in this article. A previous model of this process was extended to predict the whole molecular weight distribution of the modified resin. Probability generating functions were applied to transform the infinite set of mass balance equations of both polymer and radicals. The integration of the transformed set of equations yielded the probability generating function transforms. These transforms were then inverted with two different inversion algorithms, recovering the molecular weight distributions of the polymer. The model predictions were compared with our experimental data and other information taken from the literature. Good agreement was obtained. The approach presented here is also useful for other polymerization and postpolymerization processes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1676–1685, 2003  相似文献   

8.
An experimental study of the influence of molecular weight distribution on the melt spinning and extrudate swell of a series of polypropylenes of varying molecular weight and distribution is reported. Emphasis is given to effects of variations of molecular weight distribution. Narrowing the molecular distribution increases the slope of the elongational viscosity–elongation rate curve, stabilizes the spinline relative to both random disturbances and draw resonance, and decreases both instantaneous and delayed extrudate swell. These results are interpreted in terms of viscoelastic fluid mechanics and earlier experimental studies by the authors of the influence of molecular weight distribution on rheological properties. The influences of these rheological factors on spinline structure development is discussed.  相似文献   

9.
The effect of polymerization temperature on the melt flow behavior of PVC of varying molecular weights has been studied over a wide shear rate range. For the same molecular weight, higher melt viscosities are observed for polymers prepared at lower temperatures. The shear rate dependence of the viscosity vs molecular weight plot is shown to be nonlinear over the shear rates examined. The inability to achieve a limiting zero-shear viscosity is discussed.  相似文献   

10.
The effect of molecular structure of polypropylene (PP) on the melt rheological properties were investigated for electron irradiated polymer and di-2-ethylhexyl peroxy dicarbonate (EHPC)-treated polymer. The modifications were examined in terms of the rheological behaviors, molecular weight distribution, and the degree of branching. The high melt strength PP was obtained by irradiating with 50 and 80 kGy and adding EHPC. The modified PPs showed the strain hardening in the uniaxial elongational viscosity, though the linear elongational viscosity was lower than that of the unmodified PP. Low angle laser light-scattering measurements of the modified PPs showed the interesting results; high irradiation doses such as 50 and 80 kGy caused higher molecular weight chains branching. Nevertheless, the long branching chains were not detected for the EHPC modified PP, which also showed the strain hardening in uniaxial elongational flow. In this article, the relation between chain structure and rheological properties is discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1493–1500, 1999  相似文献   

11.
Maleic anhydride grafted polypropylene (PP‐g‐MA) and organically modified clay composites were prepared in a plasticorder. PP‐g‐MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PP‐g‐MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP‐g‐MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP‐g‐MA compatibilizers with a twin‐screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP‐g‐MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1667–1680, 2005  相似文献   

12.
The influence of molecular weight and molecular weight distribution on the melt rheological behavior of two polystrenes of approximately the same weight average molecular weight, but of widely different molecular weight distribution, was determined. Then, using a series of capillaries with different length-to-diameter ratios in an Instron Capillary Rheometer, the entrance correction methods of E. B. Bagley and the relationships of W. Philippoff and F. H. Gaskins, the recoverable shear strain (SR) in the melt at the capillary wall for these mono- and polydisperse polystyrenes was determined. Shear modulus (G) and normal stress (PN) were calculated using the relationships: G = τRC/SR and PN = 2τRC SR, where τRC is the corrected shear stress at the capillary wall. These are compared to values obtained using a Weissenberg Rheogonimeter. These two polystyrenes were also injection molded into an ASTM specimen mold over a wide range of stock temperature, using a 12 OZ . in-line reciprocating screw injection press, and evaluated for mechanical property values. The effects of the elasticity parameters (SR G & PN) and their magnitude on the rheology, processability and mechanical properties of these polystyrenes are discussed.  相似文献   

13.
Vinyl chloride (VCM) was polymerized by free-radical suspension procedures in presence of methyl-substituted olefins such as propylene, isobutylene, cis-2-butene, trimethylethylene, and tetramethylethylene. Dilute solution viscosities of polymer formed in the presence of these olefins were measured and compared to that of trichloroethylene, a chlorinated chain-transfer agent. A pseudo-chain-transfer coefficient for these olefins was calculated based on solution viscosity determinations and found to be exponentially proportional to the number of allylic hydrogens. The effects on melt flow of the olefin distribution in the polymer chain were examined. Olefins at the ends of polymer chains were found to have no effect on melt rheology, whereas those in internal portions of chains were found to significantly increase melt flow.  相似文献   

14.
Peculiar observations on the melt rheology of ultra-dry nylon resins, nylon 6 in particular, are reported. One aspect of this study deals with a sharp increase in zero shear melt viscosity (e.g. 2 to 5 times) as the nylon 6 resin moisture is taken from 0.10 down to 0.00%; the effect being reversible. Changes of such magnitude are unexpected considering that there are no detectable variations of the chemical/compositional/molecular weight type in the starting resin, when subjected to the imposed drying conditions. Another aspect of this study deals with a deviation of nylons (6, 6,6, and 12) from the Bueche (1952) relationship, well accepted for polymers to date. Under moderate drying conditions (e.g. 50°C/17 h/110 millitorr), the molecular weight exponent is found to be 3.8, which is within the range of 3.4 to 3.8 reported for nylon 6. However, under more severe drying conditions (e.g. 110°C/17 h/110 millitorr), the molecular weight exponents for nylon 6, nylon 66, and nylon 12 are 4.8, 5.4, and 4.6, respectively. We are proposing that a sharp increase in melt viscosity of ultra-dry nylon 6 is partly due to an increase in the molecular weight of the melt (extrudate) which then, has a more pronounced impact on melt viscosity in view of the 4.8 exponent. Such unique results, in contrast to polyethylene (free radical polymer) and poly(ethylene terephthalate) (condensation polymer) are tentatively attributed to H-bonding in nylon melts. Yet another aspect of this study deals with the rheology of supercooled molten polymers that can offer advantages for analytical characterization.  相似文献   

15.
We analyze the linear viscoelastic behavior and the strain‐rate dependence of nonlinear viscoelastic as well as the ultimate extensional properties of industrially relevant linear polystyrene mixtures (PS). The studied materials comprise different miscible binary mixtures of a well entangled matrix and unentangled diluent resulting in bimodal molar mass distribution (MWD). We also analyze the effect of the diluent weight average molar mass (Mw) by comparison with a mixture having broad but monomodal MWD. We show that the dilution effect on linear rheological properties is in agreement with the theoretical value of unity for the dilution exponent. We further show that the processing window, expressed as the ability of the material to withstand a given load without loss of homogeneity during elongation or ultimate loss of cohesion, is affected differently depending on the diluent Mw and concentration. Finally, we conclude that the existence of strain hardening is not sufficient for complete characterization of extension dominated operations. Our results demonstrate that significant enhancement of strain hardening achieved by adding small‐Mw diluents is often accompanied by trade‐off with respect to failure behavior of these mixtures. POLYM. ENG. SCI. 56:1012–1020, 2016. © 2016 Society of Plastics Engineers  相似文献   

16.
Pure isotactic polypropylene (iPP) and 90/10 wt iPP/ultra high molecular weight polyethylene (UHMWPE) blends, prepared by a novel vibration internal mixer reformed from a coventional internal mixer via parallel superposition of an oscillatory shear on a steady shear, were investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction. After plasticating pure iPP in the vibration field, the number of β form crystals of iPP was increased. The β form exhibited a single DSC melting peak different from that of the bulk α form crystals of iPP. After mixing of UHMWPE with iPP, the melting point of the UHMWPE component shifted to a lower temperature. For blends mixed at the higher‐frequency and/or larger‐amplitude vibrations, the melting point of the UHMWPE component was further gently lowered while the bulk melting point of the iPP component was slightly increased. The crystallization peaks of the two components overlapped into one single peak, and the total crystallinity became higher, together with a larger amount of the β iPP. These results showed that the two components influenced each other in blending. Hence, the resultant morphology affected the subsequent crystallization and melting behaviors. Additionally, vibration in mixing possibly affected the conformation of some polypropylene chains to favor the subsequent packing in the β form.  相似文献   

17.
For various purposes, it is required to compress the shape of the molecular weight distribution (MWD) of polymers into a limited set of parameters. With increasing molecular weight and polydispersity, the MWD data obtained from chromatography become increasingly unreliable due to deficiencies in the high molecular weight region, making estimation via melt rheology more preferable. A number of empirical parameters obtained from melt rheology can be related back to MWD parameters. The target of this study is to establish the reliability of such relations for polypropylene homo- and copolymers. It is found that correlations between polydispersity from rheological crossover modulus and polydispersity via chromatography are not always valid. Therefore, the range of applicability must be kept in mind when attempting predictions based on these correlations because rheological measurements are sensitive to molecular characteristics in ways different from chromatography. The use of a modified polydispersity index is shown to be more reliable.  相似文献   

18.
An experimental study of steady shear and elongational flow Theological properties of a series of polypropylene melts of varying molecular weight and distribution is reported. Broadening the molecular weight distribution increases the non-Newtonian character of the shear viscosity function and increases the principal normal stress differences at fixed shear stress. The behavior is compared to earlier rheological property-molecular weight studies. Correlations are developed for these properties in terms of molecular structure. Elongational flow studies indicate that for commercial and broader molecular weight distribution samples, ready failure by neck development occurs and the elongational viscosity appears to decrease with increasing elongation rate. For narrower molecular weight distribution samples, the elongational viscosity is an increasing function of elongation rate, The implication of these experimental results to viscoelastic fluid constitutive equations and polymer melt processing is developed.  相似文献   

19.
Polypropylene (PP) blends with various molecular weight and isotacticity were prepared through solution blending and subjected to rapid melt quenching. Structural changes in the PP matrix during mesomorphic phase formation were measured by FTIR spectroscopy and wide‐angle X‐ray diffraction measurements. The blends with different molecular weight and isotacticity provided the pathway to understand their influence on mesomorphic phase formation. It is observed that low molecular weight PP with low isotacticity forms mesomorphic phase, whereas high molecular weight and low isotactic PP does not lead to the formation of mesomorphic phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The molecular weights of the industrial-grade isotactic polypropylene (i-PP) homopolymers samples were determined by the melt-state rheological method and effects of molecular weight and molecular weight distribution on solid and melt state creep properties were investigated in detail. The melt-state creep test results showed that the creep resistance of the samples increased by Mw due to the increased chain entanglements, while variations in the polydispersity index (PDI) values did not cause a considerable change in the creep strain values. Moreover, the solid-state creep test results showed that creep strain values increased by Mw and PDI due to the decreasing amount of crystalline structure in the polymer. The results also showed that the amount of crystalline segment was more effective than chain entanglements that were caused by long polymer chains on the creep resistance of the polymers. Modeling the solid-state viscoelastic structure of the samples by the Burger model revealed that the weight of the viscous strain in the total creep strain increased with Mw and PDI, which meant that the differences in the creep strain values of the samples would be more pronounced at extended periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号