首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
粒子群优化BP神经网络的激光铣削质量预测模型   总被引:2,自引:1,他引:2       下载免费PDF全文
为了有效地控制激光铣削层质量,建立了激光铣削层质量(铣削层宽度、铣削层深度)与铣削层参数(激光功率、扫描速度和离焦量)的BP神经网络预测模型。采用粒子群算法优化了BP神经网络的权值和阈值,构建了基于粒子群神经网络的质量预测模型。所提出的PSO-BP算法解决了一般BP算法迭代速度慢,且易出现局部最优的问题,并以Al2O3陶瓷激光铣削质量预测为例,进行算法实现。仿真结果表明:提出的PSO-BP算法迭代次数大大减少,且预测误差明显减少。所构建的质量预测模型具有较高的预测精度和实用价值。  相似文献   

3.
为了提高汽轮机诊断系统的诊断速度与精度,提出了将量子粒子群算法和BP神经网络相结合的故障诊断方法。用量子粒子群算法来训练网络的权值和阈值,再将优化后的权值和阈值代入BP网络,进行故障诊断。实例证明,它是一种高效,可靠的诊断方法。  相似文献   

4.
《现代电子技术》2019,(17):152-154
为了提高高校教学管理评估的有效性与智能性,将粒子群优化BP神经网络算法运用于高校教学管理评估数据的分析。采用BP神经网络对教学管理评估指标进行建模,然后采用粒子群对神经网络传递函数的权重和阈值进行深入优化,保证BP神经网络的输出能取得全局最优解。经过实验证明,所提算法对高校教学管理评估对象的预估值与实际值拟合性好,有较强的推广价值。  相似文献   

5.
基于粒子群优化模糊小波网络的目标威胁评估   总被引:1,自引:0,他引:1  
主要对不确定性环境下的空中目标威胁评估问题进行研究。首先通过模糊神经网络处理信息不确定问题,在获取威胁目标信息较少的环境下,使用小波神经网络增强网络自学习能力,并分析威胁因素,创建不确定性环境下的模糊小波神经网络(FWNN),实现对目标威胁的评估;然后针对初始参数的不确定性问题,采用粒子群优化算法和BP算法更新每个模糊规则后件部分的参数,以达到提高评估效果的目的。仿真结果表明,与模糊小波神经网络相比,该算法提高系统的稳定性,加快收敛速度,增强预测精度。  相似文献   

6.
为克服传统BP神经网络在运算过程的不足,提出一种基于高维粒子群算法的神经网络优化方法。通过在高维PSO算法中引入随机变化的加速常数来获得最优权值,对BP神经网络进行优化和训练,再将优化好的高维BP神经网络运用到交通事件自动检测中,通过检测训练算法,并对训练后的数据进行分类测试,把分类测试的结果与传统BP神经网络和经典事件检测算法比较。结果显示,经过优化后的高维粒子群BP神经网络的检测率、算法性能均优于BP神经网络算法和经典算法,其中97,50个测试样本中仅有2个测试样本与应该达到的数值不一致,其他样本都满足测试要求,并且平均优化测试时间是传统BP神经网络检测时间的一半,因此,优化后的BP神经网络算法的性能十分优越。  相似文献   

7.
8.
针对传统脉诊存在易受主观因素影响、诊断结果可靠性不高等问题,提出基于粒子群优化BP神经网络的脉象识别方法。粒子群算法中评判粒子好坏的适应度函数采用神经网络的输出误差,以此获得最优粒子的位置向量,并把其值作为BP神经网络的初始权值和阈值。在Matlab中建立基于BP算法、PSO-BP算法和GA-BP算法的三种ANN模型用于脉象信号的识别。实验结果表明,在识别脉象时,优化后的算法降低了传统BP神经网络的输出误差,提高了识别精度,PSO-BP算法明显改善了传统BP神经网络的泛化能力。  相似文献   

9.
针对BP神经网络容易陷入局部极小点的问题,提出了自适应权重粒子群对BP神经网络优化的光伏阵列故障诊断方法.创建BP神经网络诊断模型,并且分析诊断模型的输入和输出.明确指出故障的类型与特征量,将Isc、Uoc、Um和Im值作为BP神经网络训练数据样本进行仿真测试.仿真结果表明,该方法的精准度较高,并且训练过程简单,对故障...  相似文献   

10.
对于电子器件寿命预测问题,文章提出了基于改进粒子群优化算法的BP神经网络电子器件寿命预测方法。首先对nMOSFET元件在不同应力条件下进行寿命试验,根据试验测试获得的寿命数据,得出对应的可靠性。文章通过结合改进粒子群优化算法和BP神经网络结合,建立电子器件寿命预测模型,应用该模型对相同应力条件的电子器件寿命进行预测,同时对应力加速条件下寿命的预测。通过试验证明,该算法具有更强的非线性拟合能力和更高的准确率。  相似文献   

11.
《现代电子技术》2017,(9):50-53
传统无线传感器网络覆盖优化方法所选算法的结构不合理,使其覆盖能力、迭代能力和有效性无法维系网络基本功能,为此提出粒子群算法的无线传感器网络覆盖优化方法。通过构建无线传感器网络认知模型,将网络覆盖优化工作转化成求取目标物体最大覆盖几率问题,使用粒子群算法对模型进行编码,利用模型适应度函数给出的约束值对网络节点位置进行更新,实现对无线传感器网络覆盖率的优化。通过分析仿真实验结论可知,与传统方法相比,该方法具有更强的覆盖能力、迭代能力和有效性。  相似文献   

12.
基于遗传算法优化的BP神经网络研究应用   总被引:1,自引:0,他引:1  
《现代电子技术》2018,(9):41-44
为提高BP神经网络预测模型对超市大米日销售预测的准确性,提出一种基于遗传算法优化的BP神经网络预测方法。介绍了BP神经网络和遗传算法的特点以及存在的缺陷,并进一步研究了BP神经网络和遗传算法相结合的有关技术,利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型获取最优解,充分发挥了BP神经网络的局部搜索能力和遗传算法的全局搜索能力的优势。仿真结果证明,该方法对超市大米日销售预测具有更高的精度和更好的非线性拟合能力。  相似文献   

13.
NO2 是主要的大气污染气体之一, 在大气光化学过程中起着重要作用。研究 NO2 浓度的时空演变, 预测其浓 度变化趋势, 对政府出台改善环境措施具有重要意义。提出利用粒子群算法 (PSO) 的反向传播 (BP) 神经网络对大气 NO2 浓度进行预测。以合肥地区 2017 年 1 月 1 日至 2019 年 12 月 31 日的大气污染数据和气象数据为基础, 结合逐步 回归方法筛选出与 NO2 浓度相关性较大的影响因子作为输入样本。构建 PSO-BP 神经网络预测模型, 利用 PSO 找出 BP 神经网络最优的初始权值和阈值。对比 BP 神经网络、遗传算法改进的 BP 神经网络和 PSO 改进的 BP 神经网络 三种模型的预测结果, 发现 PSO-BP 模型能够较为准确地预测出 NO2 浓度的动态变化规律, 并且预测精度高、模式简 单, 有望广泛应用于大气污染物浓度预测等方面的研究。  相似文献   

14.
基于接收信号强度指示(received signal strength indication, RSSI)测距的研究和应用领域很广泛,一直是物联网研究的热点. 为降低传统基于反向传播(back propagation,BP)神经网络的RSSI测距误差,文中提出一种基于K-means聚类算法对样本数据进行预处理的BP神经网络测距算法,来解决由于RSSI值衰减程度不同引起的不同距离区间RSSI值和真实距离之间映射关系不均匀的问题. 将K-means聚类算法应用于BP神经网络模型中,对样本数据进行距离区间划分,然后将已经分类好的数据分别输入BP神经网络建立网络模型并进行实验仿真. 结果显示:传统基于BP神经网络的RSSI测距算法的均方根误差为1.425 7 m;而经过K-means算法改进后的BP神经网络测距算法的均方根误差为1.288 7 m,降低了测距误差,并优化了目标RSSI值与真实距离的映射关系.  相似文献   

15.
应用粒子群优化的绿色虚拟网络映射算法   总被引:1,自引:0,他引:1  
绿色网络是近年来网络技术研究的热点,以节能为优化目标的虚拟网络映射算法成为基于网络虚拟化技术中资源分配研究的重点.提出了应用粒子群优化的绿色虚拟网络映射算法,重定义粒子群优化算法中的参数和粒子进化行为,以关闭底层网络节点和链路数量最多为适应度函数,在较低的算法复杂度条件下,获得绿色虚拟网络映射的最优解.仿真结果表明,与对比算法相比,静态环境下所提算法的运行时间大幅度降低;动态环境下所提算法的节点关闭率、链路关闭率、虚拟网络请求接受率均有所提升,算法运行时间也大大缩短.  相似文献   

16.
基于毫米波室内无线信道测量数据,将机器学习(machine learning,ML)中的径向基函数(radial basis function,RBF)方法应用于毫米波信道建模中,建立了基于自适应粒子群优化(adaptive particle swarm optimization,APSO)的RBF神经网络信道参数预测...  相似文献   

17.
软件可靠性是软件质量评价的一个重要标准,针对传统方法存在软件可靠性评估精度低,结果不可信等缺陷,提出基于改进粒子群算法的软件可靠性评估模型。首先对当前软件可靠性评估的研究现状进行分析,然后建立软件可靠性评估模型,最后采用改进粒子群算法对模型参数进行求解,并通过具体软件可靠性评估实验对模型的性能进行分析,结果表明,改进粒子群算法可以对软件可靠性进行高精度评估,而且评估结果要明显优于其他软件可靠性评估模型,具有更高的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号