首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most engineering systems used in maintenance strategies must consider deterioration and seismic structural damage. To identify the effects of deterioration and earthquakes simultaneously on structural performance, this study applies an integral simulation method. Compared with that of previous studies, the feature of the proposed method is its analysis of the time-dependent structural capacity of a deteriorating reinforced concrete (RC) building and the simulation of life-cycle earthquake events within a specified service period, while considering cumulative damage induced by deterioration and earthquakes. In addition, the proposed assessment method is applied to derive the reliability-based service life of a deteriorating RC building located in a region with high seismic hazard. Briefly, for deteriorating RC buildings, the proposed reliability-based service life assessment method provides useful information related to maintenance based on both serviceability and safety.  相似文献   

2.
The effect of shear wall configurations on seismic responses of high‐rise RC buildings is investigated in this paper using fragility analysis method. Four lower high‐rise RC buildings that have the same plan dimensions and height but are different in configurations in lateral force resisting systems, were firstly designed following the standard code procedure. To consider uncertainties in earthquake motions, 16 real ground motion pairs were selected and scaled, then applied orthogonally to the four RC building models during the Incremental Dynamic Analysis (IDA). Fragility relationships were therefore derived based on the IDA results for the three limit states including slight damage, moderate damage and collapse to show the probabilistic comparison of seismic responses among the four buildings in both x and y‐directions. It was observed that generally adding shear walls will improve buildings' seismic performance at all limit states. However, shear wall configuration also plays a significant role in seismic behavior of the lower high‐rise regular RC buildings' and internal shear walls are generally more effective than external shear walls in improving building's seismic resistance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
By now, many civil engineering researchers have extensively studied the application of earthquake energy dissipation systems in seismic‐resistant buildings. Earthquake energy dissipation systems play an important role in enhancing the sustainability of structures against seismic excitation. Frame buildings are strengthened by installing damper devices as supplemental structural members. This article presents the finite‐element‐based development of an analytical model for a viscous wall damper (VWD) device, an alternative to other earthquake energy dissipation systems, which can diminish the effect of earthquakes on structures and improve the seismic performance of multistory buildings subjected to ground motion. The constitutive law of VWDs has been formulated and integrated to develop a finite element model of VWD compatible with the reinforced concrete (RC) structure analytical model. Then, the finite element algorithm has been developed for inelastic analysis of RC buildings equipped with VWD devices capable of detecting damage to both structural members and damper connections under dynamic loading. Based on the developed system, the special finite element program was codified and verified by applying it to a real model of a RC building with supplementary VWD devices. Influence of VWDs on seismic performance of the RC building during earthquake excitation was evaluated. The proposed analytical model for VWD is verified by using experimental test data and analysis result proved that this energy dissipation system succeeds by substantially diminishing and dissipating a structure's induced seismic responses. Also the parametric study indicated that the damping coefficient is very effective on performance of VWD.  相似文献   

4.
针对钢筋混凝土梁式转换结构存在竖向刚度突变不利于抗震的问题,在转换层处设置了钢筋混凝土腋撑,以降低转换结构竖向刚度突变程度,改善其抗震性能。通过对普通与带腋撑钢筋混凝土转换框架结构进行增量动力分析,建立其地震易损性曲线方程,并且研究了腋撑对钢筋混凝土转换框架结构破坏机制的影响。分析结果表明,钢筋混凝土腋撑能有效地减缓转换框架结构地震反应,显著地降低转换框架结构在各个破坏状态下的超越概率。在强烈地震作用下,钢筋混凝土腋撑能有效地避免结构在首层与转换层处形成"层侧移机构"的破坏机制,防止钢筋混凝土转换框架结构发生整体或局部倒塌破坏。  相似文献   

5.
This article presents a novel simplified method for assessing seismic damage to low-rise reinforced concrete (RC) buildings by using the hazard curve of response spectral acceleration. Moreover, the occurrence of an earthquake is assumed to follow a Poisson process when analysing the occurrence probability of a specified damage state in the remaining service life and expected losses induced by seismic damage. Then, a novel procedure for estimating lifetime costs and benefits of seismic retrofitting is proposed. In the case study, 16 practical design projects for seismic retrofitting of RC school buildings in Taipei are subjected to lifetime cost-benefit analysis using the proposed method. It can be found that not only lifetime cost-benefit ratios but also the financial return period for each dollar invested seismic retrofitting can be identified conveniently. Additionally, they are useful information for making decisions about whether to retrofit a building or not.  相似文献   

6.
本文采用弹塑性时程分析方法,对底部框架多层砌体房屋在不同烈度罕遇地震作用下进行了抗震性能评估;研究了在底部框架内增设消能外包混凝土无粘结钢支撑对房屋抗震性能的影响;对增设消能支撑加固方案和增设抗震墙加固方案进行了对比分析。分析结果表明,在底层框架砌体房屋的底层增设消能支撑可显著降低底层框架的最大层间位移,控制结构的塑性损伤,提高结构的抗震性能。增设消能支撑加固方案与增设抗震墙加固方案相比,结构加固更合理、更易实施。  相似文献   

7.
在增量动力分析的基础上,结合地震易损性分析,提出了基于增量动力分析的超高层混合结构地震易损性分析方法,该方法可以从概率角度定量评估该类工程结构的抗震性能。以设计的某50层超高层混合结构为算例,采用上述方法对该结构进行地震易损性分析,依据指定不同强度地震作用下各极限状态的结构地震易损性概率,评定该结构的抗震性能。结果表明:该超高层混合结构在7度多遇地震作用下,处于正常使用和基本可使用状态;在7度设防地震作用下,处于基本可使用和修复后使用状态;在7度罕遇地震作用下,处于修复后使用和生命安全状态。该结构基本满足“小震不坏、中震可修、大震不倒”的抗震要求,具有良好的抗震性能。  相似文献   

8.
In China, a considerable proportion of reinforced concrete (RC) industrial chimneys in operation was designed and constructed in accordance with less rigorous outdated seismic criteria during the end of 19th and early 20th century. However, few research works have been reported till date on a realistic overall assessment of the seismic performance of these existing aging RC chimney structures. Therefore, in this study, fragilities of existing RC chimney were studied. For this purpose, an existing 240 m tall RC chimney was selected and structurally modeled with a lumped mass beam (stick) model by means of the OpenSees analysis program. In order to capture the uncertainties in ground motion realizations, a series of 21 ground motions are selected from the Next Generation Attenuation database as the input motions. To develop the analytical fragility curves, nonlinear incremental dynamic analysis of the studied RC chimney was then carried out using the selected input motions, which were normalized to different excitation levels. The section curvature ductility ratio was considered as the damage index. Based on material strain and sectional analysis, four limit states (LSs) were defined for five damage state. The seismic responses of the all sections were utilized to evaluate the likelihood of exceeding the LSs. Then the peak ground acceleration (PGA)‐based seismic fragility curves of the structure were constructed assuming a lognormal distribution. Finally, under the light of these fragility curves, the damage risks in existing RC chimney were discussed. The analytical results indicated that for design level earthquake of PGA = 0.1 g (g is the gravitational acceleration) and the maximum considered earthquake of PGA = 0.22 g, the probabilities of exceeding the light damage state were around 1.5% and 44%, respectively, while the exceedance probabilities corresponding to moderate, extensive and complete damage states were approximately zero in both cases. On the other hand, fragility analysis revealed that the RC chimney structure had considerable ductility capacity and was capable to withstand a strong earthquake with some structural damages. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Reinforced concrete (RC) shear wall buildings with unreinforced masonry (URM) infilled moment frames are common in India and neighboring countries. This study assesses the influence of the URM infills on their seismic performance. Fully infilled, open first-storied, and bare frame versions of a 25-story shear wall building are considered. Multiple stripe analysis is conducted at five return periods to estimate their performance. Fragility functions for the collapse prevention limit state, which is based on seven engineering demand parameter exceedance thresholds, are generated and compared. The presence of infills (full or partial) is observed to have an overall positive effect on the performance of the RC frame-shear wall buildings. The performance of the open first-story building was comparable to that of the fully infilled building. The ratio of story shear carried by the moment frames and shear walls is studied at all return periods to understand the variation in frame shear wall interaction with increased damage for each building. In the case of buildings with infills, the frames carry a higher proportion of story shear at lower return periods. For all three buildings, the fraction of story shear carried by moment frames increases along the height of the building.  相似文献   

10.
This paper presents a novel method for estimating the seismic peak interstory drift ratio (IDR) in reinforced concrete (RC) columns after an earthquake using surface crack image analysis. The quantitative representation of the complexity and irregularity of crack images in damaged RC columns is obtained through the consideration of the generalized fractal dimensions. The authors have compiled a comprehensive database consisting of 445 crack maps obtained from cyclic experiments conducted on 110 rectangular RC column specimens exhibiting double-curvature deformation mode. This database is utilized by the authors to develop and validate the proposed procedure. The research database contains a wide range of structural and geometric features. Five closed-form equations are developed with the objective of estimating the peak IDR experienced by the RC columns during a seismic event. The predictive equations are derived through the utilization of symbolic regression technique, with the input parameters varying according to the availability of columns characteristic parameters. Results reveal that generalized fractal dimensions, especially D−1, are strong vision-based indicator of damage in RC columns having correlation coefficients with IDR ranging from 0.82 to 0.92 across the considered plans. The seismic peak IDR obtained through the empirical equations can serve as the input engineering demand parameter (EDP) in the seismic loss estimation frameworks. This allows for the determination of the probability of exceeding damage states for structural and nonstructural components of concrete buildings. Finally, the practical implementation of the methodology is examined by its application to an actual case of a damaged column during the Kermanshah earthquake of magnitude 7.3 that occurred in 2017.  相似文献   

11.
Irregular buildings behave differently as compared with regular buildings. Seismic design codes have quantified the irregularities in terms of magnitude only ignoring the effect of irregularity location. In the present study, a single parameter to quantify mass, stiffness and strength irregularity in terms of both magnitude and location is proposed on the basis of the dynamic characteristics of the building. Furthermore, building models with different types of irregularity with variation in magnitude and location of irregularity are analyzed by subjecting them to an ensemble of 27 ground motions to create a seismic response databank. In the analysis, the torsional effects generated due to irregularities in the building systems (as per EC 8:2004 provisions) are included. On the basis of regression analysis conducted on this seismic response databank, equations to estimate seismic response parameters such as fundamental period, maximum roof displacement and maximum inter‐story drift ratio etc. are proposed for the irregular buildings in terms of the proposed irregularity index. Finally, applicability of the proposed equations is discussed in brief, and these equations are validated for 2D and 3D building models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Transparent insulation systems (TI‐systems) of less than 20cm thick have been developed as an alternative to opaque wall insulation and windows, which provide a financial return to building occupants when applied to building façades. Lack of detailed cost analysis of TI‐systems is a major constraint to the application of TI‐wall and TI‐glazing in buildings. A goal directed life cycle costing (LCC) technique and sensitivity analysis used to evaluate the economic feasibility of TI‐applications in office buildings form the basis of this research. It was undertaken as part of research to determine optimum energy and cost performance of TI‐systems for external cladding of high‐rise and low‐rise office buildings in temperate and tropical climates. The LCC of the buildings with conventional façades were compared with those with TI‐façades. The results show that LCC can be used to evaluate the economic feasibility of low carbon technologies such as TI‐systems effectively. A detailed account is provided of how different sources of cost data can be captured, collected and integrated to perform selective goal directed LCC analysis in the absence of detailed historical LCC data. The use of the goal directed LCC method and cost influence diagram presented in this research can be adopted as a standard method for assessing the economic feasibility of applying low carbon technologies to buildings.  相似文献   

13.
There is substantial evidence showing that the seismic performance of many existing buildings may be inadequate to resist another strong earthquake. The losses from a devastating earthquake are always huge. In order to prevent damage extension and to restore the damaged community as quickly as possible, immediate post-earthquake damage assessment is always conducted through site inspection on structural components within a restricted short period of time to screen buildings that are damaged to certain levels or in danger of collapse. Without detail financial loss estimation, engineers have to face the challenge to decide whether a badly damaged building is worth retrofitting for sustainability, or needs to be demolished because existing loss estimation models are not based on the post-earthquake damage rating system. Based on some post-earthquake damage data of RC residential buildings, this paper aims to link inspected component damage level, building damage state and direct financial loss in terms of repair to replacement cost ratio. Damage of structural components are quantified by a set of damage factors and finally integrated as a building damage indicator. Building repair to replacement cost ratio and storey repair to replacement cost ratio corresponding to various damage levels of RC residential buildings have been estimated. With these statistical data, relationships of building damage indicator to repair to replacement cost ratio has been built from regression analysis.  相似文献   

14.
Many tall buildings are practically irregular as an entirely regular high‐rise building rarely exists. This study is thus devoted to assessing the approach and coefficients used in the seismic design of real‐life tall buildings with different vertical irregularity features. Five 50‐story buildings are selected and designed using finite element models and international building codes to represent the most common vertical irregularities of reinforced concrete tall buildings in regions of medium seismicity. Detailed fiber‐based simulation models are developed to assess the seismic response of the five benchmark buildings under the effect of 40 earthquake records representing far‐field and near‐source seismic scenarios. The results obtained from a large number of inelastic pushover and incremental dynamic analyses provide insights into the local and global seismic response of the reference structures and confirm the inferior local response of tall buildings with severe vertical irregularities. Due to the significant impacts of the severe irregularity types on the seismic response of tall buildings, the conservative code approach and coefficients are recommended for design. It is also concluded that although the design coefficients of buildings with moderate irregularities are adequately conservative, they can be revised to arrive at more consistent safety margins and cost‐effective designs.  相似文献   

15.
安晓文  李丹 《建筑结构》2020,50(7):28-36
2014年8月3日云南鲁甸6.5级地震震级不高,但极震区地震烈度达到9度,震害严重。震害调查表明,极震区龙头山镇建筑震害差异巨大,地形、地基土不同和断裂影响可能是造成建筑震害差异的主要原因。龙头山镇建有不同时期的各类建筑,其中严格按规范设计建造的房屋,绝大多数未倒塌,但也暴露出一些较普遍的问题,如:砌体结构和框架结构普遍出现底层严重破坏甚至倒塌;框架结构"强柱弱梁"机制普遍未能实现等。抗震措施不到位的老旧建筑和农村自建房则多数倒塌。通过对多层砌体、框架和简易民居典型震害的分析,总结经验教训,提出有关建议。  相似文献   

16.
为了研究钢筋混凝土(RC)框架结构中砌体填充墙的地震易损性,进行了6个足尺含填充墙RC框架试件的面内往复加载试验。各试件中RC框架的设计参数均相同,其中3个试件含普通黏土砖填充墙,另外3个试件含水泥空心砌块填充墙。试验过程中,记录了砌体填充墙的损伤发展过程,并以墙体裂缝宽度和破碎坠落现象作为损伤指标,定义了“明显破坏”、“严重破坏”和“危及安全”等3个损伤状态。在此基础上,以层间位移角作为工程需求参数,建立了普通黏土砖和水泥空心砌块填充墙的易损性曲线。易损性分析结果表明,当试件的面内侧向变形达到GB 50011—2010《建筑抗震设计规范》规定的框架结构弹性层间位移角限值时,黏土砖和空心砌块填充墙均极有可能达到或超越“明显破坏”状态,且空心砌块填充墙尚有22%的概率达到或超越“严重破坏”状态。与黏土砖填充墙相比,水泥空心砌块填充墙的易损性参数具有更大的离散性,且其整体性更差,当侧向变形较大时会出现破碎砌块坠落的现象。根据试验结果,给出了砌体墙最大残余裂缝宽度、最大裂缝宽度和层间位移角之间的近似相关关系。  相似文献   

17.
Suspended buildings typically have a core as the primary and suspended floors as the secondary structures. These configurations offer visual transparency, smaller vertical components, and seismic attenuation via the primary–secondary structure interaction. Such attenuation is further enhanced by the modularization of the suspended segment which allows large drifts but prevents them from causing damage. Previously conducted shake‐table tests have confirmed these features. However, how the component performance contributes to system performance has not been quantitated. To address this gap, fragility analyses are conducted for 10‐story experimentally validated models with optimized supplemental dampers and inter‐module stiffness. Multiple limit state functions are proposed to provide a full account of damage sources. Additionally, a mapping rule from the component‐level to the system‐level limit states is developed which captures the influence of damage distribution on system‐level limit states. Results for the uncontrolled suspended building indicate that for the PGV of 0.5 m/s, the failure probabilities of the repairable and life safety limit states are 97% and 83%, respectively. These probabilities are 92% and 27% for the frame structure with viscous dampers, 58% and 5% for the passive‐controlled modularized suspended building system (MSBS), and 45% and 3% for MSBS with optimal vertical distributions of modularized secondary structure.  相似文献   

18.
L‐shaped reinforced concrete (RC) shear walls have been studied over the years due to their importance in tall buildings. However, few investigations focus on the progression of damage with increasing deformation, especially on the deformation limits for different performance levels. Hence, an experiment was conducted on 12 L‐shaped RC shear walls subjected to axial and cyclic lateral loadings. The variables were shear span ratio, axial load ratio, and longitudinal boundary element reinforcement ratio. The seismic performances were analyzed and discussed in terms of crack pattern, failure mode, hysteretic response, backbone envelope, and ductility factor. On the basis of the three key performance state points on the backbone envelope, a method was proposed to assess the seismic performances of L‐shaped RC shear walls using six distinct performance levels. These performance levels were provided with relevant deformation limits and proved to be in good agreement with six significative damage states. Further, comparative analysis showed that the deformation limits derived from experiments were significantly underestimated by current codes and methods available in literature, because these prediction models were mainly developed for rectangular shear walls. Considering the contribution of flange, a modification of Cui's method yields good estimations of deformation limits for L‐shaped RC shear walls.  相似文献   

19.
Many steel–concrete hybrid buildings have been built in China. The seismic performance of such hybrid system is much more complicated than that of steel structure or reinforced concrete (RC) structure. A steel–concrete hybrid frame‐tube super‐tall building structure with new type of shear walls to be built in a district of seismic intensity 8 in China was studied for its structural complexity and irregularity. Both model test and numerical simulation were applied to obtain the detailed knowledge of seismic performance for this structure. First, a 1/30 scaled model structure was tested on the shaking table under different levels of earthquakes. The failure process and mechanism of the model structure are presented here. Nonlinear time‐history analysis of the prototype structure was then conducted by using the software PERFORM‐3D. The dynamic characteristics, inter‐story drift ratios and energy dissipation conditions are introduced. On the basis of the comparison between the deformation demand and capacity of main structural components at individual performance level under different earthquake level, the seismic performance at the member level was also evaluated. Despite the structural complexity and code‐exceeding height, both experimental and analytical results indicate that the overall seismic performance of the structure meet the requirements of the Chinese design code. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
建筑物三维分析模型及其用于结构地震反应分析的可靠性   总被引:10,自引:0,他引:10  
日本理化学研究所地震防灾研究中心与加拿大英属哥伦比亚大学的研究人员合作,共同开发和进一步发展了用于研究结构物地震反应的三维分析模型,并采用该模型编制了计算机程序,用于模拟结构物的地震反应,研究地震破坏机理.运用该分析模型的建模方法和对一设有地震仪的钢筋混凝土框架建筑物进行了分析.通过将分析结果与该建筑物在1994年Northridge地震中的记录和损伤情况进行比较,验证了作者所开发的三维分析模型和计算机程序的可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号