首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了抑制连续体结构拓扑优化结果中的棋盘格和灰度单元问题,借鉴粒子群优化算法中粒子状态的更新方法,提出一种改进的敏度更新技术.以结构的柔度最小为优化目标,构建了基于固体各项同性微惩罚结构的结构拓扑优化模型,根据结构的力学响应分析,采用优化准则法进行设计变量更新,进行载荷作用下二维连续体结构的拓扑优化设计,得到了材料在设计域内的最优分布.通过与已有敏度过滤技术的对比分析,验证了文中方法的正确性和有效性.  相似文献   

2.
为了实现使连续体结构的体积约束和柔顺度最小的拓扑优化及解决采用经典变密度法引起的结构优化结果存在如灰度单元、棋盘格等数值不稳定问题,提出了一种新的拓扑优化方法。首先,采用改进的固体各向同性材料惩罚法作为材料插值方案,建立结构拓扑优化模型;其次,通过引入基于高斯权重函数的敏度过滤法和设计新灰度单元抑制算子来解决数值不稳定问题;最后,借助优化准则法求解优化模型。通过算例分析可知:新策略可以改进拓扑优化方法;新的拓扑优化方法具有收敛速度较快、能更好地获取柔顺度小且拓扑构型好的优化结构和抑制灰度单元产生等优势。研究结果为其他连续体结构的拓扑优化研究提供了新思路。  相似文献   

3.
自由阻尼层结构阻尼材料配置优化的拓扑敏度法   总被引:8,自引:0,他引:8  
提出阻尼胞单元和阻尼拓扑敏度等概念,建立了基于阻尼拓扑敏度综合评价的阻尼材料拓扑优化准则,并用于自由阻尼层结构振动控制中阻尼材料的配置优化。建立待控结构阻尼材料布局的拓扑基结构,计算各单元的阻尼拓扑敏度。再建立考虑重量目标及结构频响峰值约束的阻尼材料配置拓扑优化模型。根据所提出的阻尼材料拓扑优化准则,求解上述配置优化问题,确定阈值和各单元拓扑值。并用若干典型结构算例,验证所提出方法的正确性,讨论了阻尼材料布局拓扑基结构的规模与优化效率的关系。  相似文献   

4.
大型复杂三维结构拓扑优化设计既具有理论意义,又具有重要的应用价值。基于等效转换的非奇异的结构优化模型,研究结构位移要求的最小结构重量设计问题。首先,介绍了位移约束的三维结构优化准则和公式。而后,为了提高拥有数万个单元以上的三维结构的计算效率,结合结构位移计算的迭代方法,在分析用于结构特性参数计算模型的基础上,建立了一套三维结构拓扑优化的求解策略和算法。最后,给出了几个典型和复杂的三维结构的拓扑优化设计算例。算例表明求解策略和算法是正确和有效的,且具有广泛的工程应用前景。  相似文献   

5.
Wolff法则是指骨骼通过重建/生长,保证骨小梁方向趋于与主应力方向一致以不断地适应它的力学环境。根据Wolff法则,建立了一种新的拓扑优化的准则法。该方法的基本思想是:(1)将待优化的结构看作是一块遵从Wolff法则生长的骨骼,骨骼的重建过程作为三维连续体结构寻找最优拓扑的过程;(2)用构造张量描述正交各向异性材料的弹性本构;(3)重建规律为结构中材料的更新规律。通过引入参考应变区间,材料更新规律可解释为:设计域内一点处主应变的绝对值不在该区间时,该点处构造张量出现变化;否则,构造张量不变化,该点处于生长平衡状态。(4)当设计域内所有点都处于生长平衡状态时,结构拓扑优化结束。采用各向同性本构模型,即令二阶构造张量与二阶单位张量成比例,分析三维结构拓扑优化。实例进一步验证基于Wolf法则的连续体结构优化方法的正确性和可行性。  相似文献   

6.
针对不确定性简谐激励下连续体结构设计问题,提出了一种有效的考虑载荷振幅和频率不确定性的谐响应可靠性拓扑优化方法。建立了概率可靠性约束下结构体积比最小化的可靠性设计优化模型,其中极限状态函数定义为所关注自由度振幅平方和。利用伴随变量法推导了极限状态函数关于设计变量和随机变量的解析灵敏度列式,采用功能度量法实现结构可靠性分析,并基于移动渐进线方法实现设计变量的更新。最后,通过3个数值算例及蒙特卡罗仿真,验证了所提方法对不确定性简谐激励下连续体结构设计问题的有效性和稳定性,并讨论了简谐激励的振幅大小和频率不确定性、可靠度指标及变异系数对优化结果的影响。  相似文献   

7.
将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。  相似文献   

8.
利用多边形有限单元的高精度求解优势,融合多分辨率拓扑优化方法,实现粗糙位移网格条件下的高分辨率构型设计,由此提出多材料结构动刚度问题的拓扑优化方法。将多边形单元(位移场求解单元)劈分为精细的小单元,构造设计变量与密度变量的重叠网格,形成多分辨率-多边形单元的优化建模策略;以平均动柔度最小化为目标和多材料的体积占比为约束,建立多材料结构的动力学拓扑优化模型,通过HHT-α方法求解结构动响应,采用伴随变量法推导目标函数和约束的灵敏度表达式,利用基于敏度分离技术的ZPR设计变量更新方案构建多区域体积约束问题的优化迭代格式;通过典型数值算例分析优化方法的可行性和动态载荷作用时间对优化结果的影响机制。  相似文献   

9.
通过种群动力学模型和有限元方法的耦合建立了骨骼重建数学模型,然后用像素单元的添加和删除准则把骨重建过程转化为材料形成和吸收过程,对连续体结构提出了仿生拓扑优化计算方法。通过对两个连续体结构拓扑优化中被广泛应用的典型数值算例进行拓扑优化计算,并将其结果与其它几种拓扑优化方法进行比较,验证了该方法的有效性。最终在三种不同边界条件下对长悬臂梁模型进行拓扑优化计算,以及在四种不同边界条件下拱桥模型进行拓扑优化计算,获得规则性和对称性的拓扑形式,该结果进一步说明了该仿生方法的合理性和可行性。  相似文献   

10.
基于拓扑优化思想,提出一种人工材料假设,建立了阻尼材料铺设的拓扑优化数学模型。在阻尼材料用量一定的情况下实现阻尼材料最优分布,达到减振降噪之目的。采用遗传算法进行求解,进行了阻尼材料和人工材料的转换,实现了阻尼材料的拓扑优化。数值算例表明:所提方法在减振降噪设计中具有可行性和有效性,有较好的工程应用价值,可为阻尼材料的敷设提供一种可行有效的思路。  相似文献   

11.
In this paper, a piecewise constant level set (PCLS) method is implemented to solve a structural shape and topology optimization problem. In the classical level set method, the geometrical boundary of the structure under optimization is represented by the zero level set of a continuous level set function, e.g. the signed distance function. Instead, in the PCLS approach the boundary is described by discontinuities of PCLS functions. The PCLS method is related to the phase‐field methods, and the topology optimization problem is defined as a minimization problem with piecewise constant constraints, without the need of solving the Hamilton–Jacobi equation. The result is not moving the boundaries during the iterative procedure. Thus, it offers some advantages in treating geometries, eliminating the reinitialization and naturally nucleating holes when needed. In the paper, the PCLS method is implemented with the additive operator splitting numerical scheme, and several numerical and procedural issues of the implementation are discussed. Examples of 2D structural topology optimization problem of minimum compliance design are presented, illustrating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Structural shape and topology optimization using level set functions is becoming increasingly popular. However, traditional methods do not naturally allow for new hole creation and solutions can be dependent on the initial design. Various methods have been proposed that enable new hole insertion; however, the link between hole insertion and boundary optimization can be unclear. The new method presented in this paper utilizes a secondary level set function that represents a pseudo third dimension in two‐dimensional problems to facilitate new hole insertion. The update of the secondary function is connected to the primary level set function forming a meaningful link between boundary optimization and hole creation. The performance of the method is investigated to identify suitable parameters that produce good solutions for a range of problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The purpose of this work is to present a level set‐based approach for the structural topology optimization problem of mass minimization submitted to local stress constraints. The main contributions are threefold. First, the inclusion of local stress constraints by means of an augmented Lagrangian approach within the level set context. Second, the proposition of a constraint procedure that accounts for a continuous activation/deactivation of a finite number of local stress constraints during the optimization sequence. Finally, the proposition of a logarithmic scaling of the level set normal velocity as an additional regularization technique in order to improve the minimization sequence. A set of benchmark tests in two dimensions achieving successful numerical results assesses the good behavior of the proposed method. In these examples, it is verified that the algorithm is able to identify stress concentrations and drive the design to a feasible local minimum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.  相似文献   

15.
Jikai Liu  Kajsa Duke 《工程优选》2016,48(11):1910-1931
This work presents a new multi-material level set topology optimization method which is developed especially for designing plastic parts. Instead of representing the structure using multiple level set functions, this new method employs only one level set function to describe the material/void interface. The injection moulding filling simulation is used to determine the material/material interfaces. Because plastic parts are targeted, domain-specific knowledge is carefully investigated to improve the optimization algorithm. Both homogeneous and heterogeneous fibre-reinforced plastics are considered as potential material phases. For the latter, one extra design freedom, fibre orientation distribution, is introduced. Instead of generating incremental interior voids, which complicates the mould design and part ejection, shape-fixed interior voids could be predefined inside the design domain for functional or assembly purposes. This is represented by an additional level set function. A few numerical examples are studied to demonstrate the effectiveness of the proposed method.  相似文献   

16.
The parametric level set approach is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, level set methods can be directly coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Moreover, the parametric level set scheme can not only inherit the primary advantages of the conventional level set methods, such as clear boundary representation and the flexibility in handling topological changes, but also alleviate some undesired features from the conventional level set methods, such as the need for reinitialization. However, in the existing radial basis function–based parametric level set method, it is difficult to identify the range of the design variables. Besides, the parametric level set evolution often struggles with large fluctuations during the optimization process. Those issues cause difficulties both in numerical stability and in material property mapping. In this paper, a cardinal basis function is constructed based on the radial basis function partition of unity collocation method to parameterize the level set function. The benefit of using cardinal basis function is that the range of the design variables can now be clearly specified as the value of the level set function. A distance regularization energy functional is also introduced, aiming to maintain the desired signed distance property during the level set evolution. With this desired feature, the level set evolution is stabilized against large fluctuations. In addition, the material properties mapped from the level set function to the finite element model can be more accurate.  相似文献   

17.
The level set method is a promising approach to provide flexibility in dealing with topological changes during structural optimization. Normally, the level set surface, which depicts a structure's topology by a level contour set of a continuous scalar function embedded in space, is interpolated on a fixed mesh. The accuracy of the boundary positions is therefore largely dependent on the mesh density, a characteristic of any Eulerian expression when using a fixed mesh. This article combines the adaptive moving mesh method with a level set structure topology optimization method. The finite element mesh automatically maintains a high nodal density around the structural boundaries of the material domain, whereas the mesh topology remains unchanged. Numerical experiments demonstrate the effect of the combination of a Lagrangian expression for a moving mesh and a Eulerian expression for capturing the moving boundaries.  相似文献   

18.
In this paper, we propose a level set‐based topology optimization method targeting metallic waveguide design problems, where the skin effect must be taken into account since the metallic waveguides are generally used in the high‐frequency range where this effect critically affects performance. One of the most reasonable approaches to represent the skin effect is to impose an electric field constraint condition on the surface of the metal. To implement this approach, we develop a boundary‐tracking scheme for the arbitrary Lagrangian Eulerian (ALE) mesh pertaining to the zero iso‐contour of the level set function that is given in an Eulerian mesh, and impose Dirichlet boundary conditions at the nodes on the zero iso‐contour in the ALE mesh to compute the electric field. Since the ALE mesh accurately tracks the zero iso‐contour at every optimization iteration, the electric field is always appropriately computed during optimization. For the sensitivity analysis, we compute the nodal coordinate sensitivities in the ALE mesh and smooth them by solving a Helmholtz‐type partial differential equation. The obtained smoothed sensitivities are used to compute the normal velocity in the level set equation that is solved using the Eulerian mesh, and the level set function is updated based on the computed normal velocity. Finally, the utility of the proposed method is discussed through several numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new level set method for topology optimization of distributed compliant mechanism is presented in this study. By taking two types of mean compliance into consideration, several new objective functions are developed and built in the conventional level set method to avoid generating the de facto hinges in the created mechanisms. Aimed at eliminating the costly reinitialization procedure during the evolution of the level set function, an accelerated level set evolution algorithm is developed by adding an extra energy function, which can force the level set function to close to a signed distance function during the evolution. Two widely studied numerical examples in topology optimization of compliant mechanisms are studied to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号