首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
EPDIM peptide is known to regulate cellular activities by interacting with α3β1 integrin, which can be contributed to wound healing process. In this study, EPDIM was immobilized onto three-dimensional porous chitosan beads (χtopore) as a scaffold for enhanced wound healing. The significant decrease in contact angle indicates that EPDIM immobilization could lead to the enhanced surface wettability after its immobilization. The immobilized EPDIM was fairly distributed along its surface and the morphology was maintained even after the reaction. The immobilized amount of EPDIM was found to be about 5.68 nmol/mg of χtopore by amino acid analysis. To verify the complete removal of coupling agents after EPDIM immobilization, each coupling agent was quantitatively analyzed by LC-MS. In vitro proliferation rates of both NIH 3T3 and HaCaT showed that EPDIM immobilization onto χtopore could significantly enhance the growth rate of both cells, while the unmodified χtopore did not increase in cell number even after 15 days of culture. Therefore, these results demonstrate that EPDIM peptide-immobilized χtopore can be utilized as an attractive scaffold for enhanced wound healing.  相似文献   

2.
Controlling the diameters of nanotubes represents a major challenge in nanostructures self‐assembled from templating molecules. Here, two series of bolaform hexapeptides are designed, with Set I consisting of Ac‐KI4K‐NH2, Ac‐KI3NleK‐NH2, Ac‐KI3LK‐NH2 and Ac‐KI3TleK‐NH2, and Set II consisting of Ac‐KI3VK‐NH2, Ac‐KI2V2K‐NH2, Ac‐KIV3K‐NH2 and Ac‐KV4K‐NH2. In Set I, substitution for Ile in the C‐terminal alters its side‐chain branching, but the hydrophobicity is retained. In Set II, the substitution of Val for Ile leads to the decrease of hydrophobicity, but the side‐chain β‐branching is retained. The peptide bolaphiles tend to form long nanotubes, with the tube shell being composed of a peptide monolayer. Variation in core side‐chain branching and hydrophobicity causes a steady shift of peptide nanotube diameters from more than one hundred to several nanometers, thereby achieving a reliable control over the underlying molecular self‐assembling processes. Given the structural and functional roles of peptide tubes with varying dimensions in nature and in technological applications, this study exemplifies the predictive templating of nanostructures from short peptide self‐assembly.  相似文献   

3.
The treatment of diabetic wounds remains a major challenge in clinical practice, with chronic wounds characterized by multiple drug-resistant bacterial infections, angiopathy, and oxidative damage to the microenvironment. Herein, a novel in situ injectable HA@MnO2/FGF-2/Exos hydrogel is introduced for improving diabetic wound healing. Through a simple local injection, this hydrogel is able to form a protective barrier covering the wound, providing rapid hemostasis and long-term antibacterial protection. The MnO2/ε-PL nanosheet is able to catalyze the excess H2O2 produced in the wound, converting it to O2, thus not only eliminating the harmful effects of H2O2 but also providing O2 for wound healing. Moreover, the release of M2-derived Exosomes (M2 Exos) and FGF-2 growth factor stimulates angiogenesis and epithelization, respectively. These in vivo and in vitro results demonstrate accelerated healing of diabetic wounds with the use of the HA@MnO2/FGF-2/Exos hydrogel, presenting a viable strategy for chronic diabetic wound repair.  相似文献   

4.
Silk fibroin (SF) and alginate (AA) have been proved to be invaluable natural materials in the field of biomedical engineering. This study was designed to compare the wound healing effect of SF, AA and SF/AA-blended sponge (SF/AA) with clinically used Nu GauzeTM (CONT) in a rat full thickness wound model. Two circular skin wounds on the back of rat were covered with either of CONT, SF, AA or SF/AA. On the postoperative days of 3, 7, 10 and 14, residual wound area was calculated, and skin wound tissues were biopsied to measure the area of regenerated epithelium and collagen deposition as well as the number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells. Half healing time (HT50) of SF/AA was dramatically reduced as compared with that of SF, AA or CONT. Furthermore, SF/AA significantly increased the size of re-epithelialization and the number of PCNA positive cells, whereas the effect of SF/AA on collagen deposition was not significantly different as compared with that of SF or AA. These results demonstrate that the wound healing effect of SF/AA is the best among other treatments including SF and AA, and this synergic effect is mediated by re-epithelialization via rapid proliferation of epithelial cell.  相似文献   

5.
The challenge of bacterial infection increases the risk of mortality and morbidity in acute and chronic wound healing. Silver nanoparticles (Ag NPs) are a promising new version of conventional antibacterial nanosystem to fight against the bacterial resistance in concern of the drug discovery void. However, there are several challenges in controlling the size and colloidal stability of Ag NPs, which readily aggregate or coalesce in both solid and aqueous state. In this study, a template‐guided synthesis of ultrafine Ag NPs of around 2 nm using water‐soluble and biocompatible γ‐cyclodextrin metal‐organic frameworks (CD‐MOFs) is reported. The CD‐MOF based synthetic strategy integrates AgNO3 reduction and Ag NPs immobilization in one pot achieving dual functions of reduced particle size and enhanced stability. Meanwhile, the synthesized Ag NPs are easily dispersible in aqueous media and exhibit effective bacterial inhibition. The surface modification of cross‐linked CD‐MOF particles with GRGDS peptide boosts the hemostatic effect that further enhances wound healing in synergy with the antibacterial effect. Hence, the strategy of ultrafine Ag NPs synthesis and immobilization in CD‐MOFs together with GRGDS modification holds promising potential for the rational design of effective wound healing devices.  相似文献   

6.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

7.
Wound healing is a highly complex biological process, which is accompanied by changes in cell phenotype, variations in protein expression, and the production of active biomolecules. Currently, the detection of proteins in cells is done by immunostaining where the proteins in fixed cells are detected by labeled antibodies. However, immunostaining cannot provide information about dynamic processes in living cells, within the whole tissue. Here, an easy method is presented to detect the transition of epithelial to mesenchymal cells during wound healing. The method employs DNA‐coated gold nanoparticle fluorescent nanoprobes to sense the production of Vimentin mRNA expressed in mesenchymal cells. Fluorescence microscopy is used to achieve temporal detection of Vimentin mRNA in wounds. 3D light‐sheet microscopy is utilized to observe the dynamic expression of Vimentin mRNA spatially around the wounded site in skin tissue. The use of DNA–gold nanoprobes to detect mRNA expression during wound healing opens up new possibilities for the study of real‐time mechanisms in complex biological processes.  相似文献   

8.
Angiogenesis is essential in wound healing and a common feature in chronic inflammation which is crucially involved in the biological response to biomaterials. A useful system to evaluate the angiogenic activity and the inflammatory potency of various agents is the chorioallantoic membrane (CAM) of the chick embryo. Here we examined its response to different biomaterials. Smooth materials such as PVC or the polyurethane Tecoflex® either unmodified or modified by an OH- or N(CH3) 3 + -end group (HEMA or MAPTAC) inhibited angiogenesis and did not induce the formation of granulation tissue. The anti-angiogenic effects of PVC, Tecoflex® and its HEMA modification, however, were only seen at an early stage of development. In contrast, the MAPTAC modified Tecoflex>® inhibited angiogenesis over the whole time. Rough materials, e.g. filter paper or a collagen/elastin membrane, stimulated angiogenesis and induced the formation of inflammatory tissue. Histological analysis revealed that the filter material was homogeneously populated with cells consisiting mainly of macrophages, fibroblasts and endothelial cells. The collagen/elastin membrane was only partially infiltrated with cells. Among those also clusters of granulocytes were present pointing to an acute inflammatory process. These data show that the angiogenic activity and inflammatory response of biomaterials strongly depend on the chemical composition and the physical structure of the material. The CAM assay appears to be a useful tool for studying biocompatibility. © 2001 Kluwer Academic Publishers  相似文献   

9.
A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relatively low delivery efficiency into the deep wound site. Here, a microalgae-based biohybrid microrobot for accelerated diabetic wound healing is developed. The biohybrid microrobot autonomously moves at velocity of 33.3 µm s−1 and generates oxygen for the alleviation of hypoxic condition. In addition, the microrobot efficiently bound with inflammatory chemokines of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) for modulating the immune responses. The enhanced penetration of microrobot is corroborated by measuring fibrin clots in biomimetic wound using microfluidic devices and the enhanced retention of microrobot is confirmed in the real wounded mouse skin tissue. After deposition on the chronic wound in diabetic mice without wound dressing, the wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next-generation platform for diabetic wound healing.  相似文献   

10.
Wound healing requires a series of cellular events and a cascade of co‐ordinated and systemic biochemical events. Silver nanoparticles possess many beneficial properties for wound management including antibacterial, anti‐inflammatory and pro‐healing properties. In this study, the authors investigated the wound healing properties of Cinnamomum verum extract mediated nanosilver (CENS) particles in comparison with 1% povidone iodine, citrate mediate NS and CE treatments. The topical application of CENS showed good antibacterial activity and accelerated wound healing with complete epithelialisation and normal re‐growth of hair in all three models of study: namely, excision, incision and dead space models in rats compared with all other treatments. CENS was also found to promote collagen synthesis, stabilise wound besides countering oxidative stress and stimulating cellular proliferation CENS could be a novel therapeutic agent for wound management.Inspec keywords: silver, nanoparticles, nanomedicine, wounds, antibacterial activity, biomedical materials, biochemistry, cellular biophysics, proteinsOther keywords: wound healing efficacy, chemical nanoparticles, phytogenic silver nanoparticles, cellular events, systemic biochemical events, wound management, antibacterial properties, anti‐inflammatory properties, pro‐healing properties, Cinnamomum verum extract mediated nanosilver particles, CENS, complete epithelialisation, normal hair regrowth, excision model, incision model, dead space model, rats, collagen synthesis, oxidative stress, cellular proliferation, therapeutic agent, Ag  相似文献   

11.
The number of astronauts involved in long-lasting missions and extra-vehicular activities is going to increase in the future. Consequently, the chance of injury due to traumatic events or unexpected emergency surgery will also increase and medical evacuation times to earth will be prolonged. Hence, the need to address requirements for surgery and trauma care in non terrestrial environments will be a priority. Tissue repair in weightlessness should therefore be regarded as a major issue not enough studied to date. Wound healing is a complex multi-step process, crucial to the survival of the organism. It starts with an inflammatory phase followed by a remodelling phase. During repair, the extracellular matrix (ECM) is sequentially remodelled by the concerted action of different cell types, in order to rebuild a functional tissue. The available literature concerning wound healing with mechanical unloading presents controversial results. However, many studies indicate impairment of the healing processes. Here we present a study on the behaviour of cells involved in the remodelling phase of repair, e.g. fibroblasts and endothelial cells, in response to microgravity (μg). In particular, their adhesion/migration, cytoskeleton organization, production of ECM molecules and receptors have been investigated. Cell response to pulsed Nd:YAG laser irradiation has also been investigated in order to evaluate the possibility to use laser irradiation for counteracting the effect of μg on wound healing. In μg, we observed alterations in production/assembling of ECM molecules. Increased fibronectin (FN) and laminin (LM) could be the cause for impaired ECM rebuilding and altered cell adhesion/migration. Treatment with Nd:YAG laser pulses induced organized fibrillogenesis and favoured endothelial cell spreading and monolayer formation. These findings open the way for a better understanding of tissue repair mechanisms in space and future clinical applications on earth.  相似文献   

12.
Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full‐thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid‐graft‐dopamine and reduced graphene oxide (rGO) using a H2O2/HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self‐healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full‐thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full‐thickness skin repair.  相似文献   

13.
Hyaluronan is particularly attractive for tissue engineering and repair because it: (1) is a normal component of the extracellular matrices of most mammalian tissues; (2) contributes to the biological and physical functions of these tissues; and (3) possesses excellent biocompatibility and physiochemical properties. In the present study, we characterize a two-step enzymatic cross-linking chemistry for production of tyramine-based hyaluronan hydrogels using fluorophore-assisted carbohydrate electrophoresis, enzymatic digestion, and spectroscopy including absorbance, fluorescence and 1H NMR. Substitution on hyaluronan of tyramine and other adducts from unproductive side reactions depends on the molar ratio of tyramine to carbodiimide used during the substitution (step 1) reaction. Results indicate that relatively low tyramine substitution is required to form stable hydrogels, leaving the majority of hyaluronan disaccharides unmodified. Sufficient native HA structure is maintained to allow recognition and binding by b-HABP, a HA binding complex typically found in normal cartilage biology. Hydrogels were formed from tyramine-substituted hyaluronan through a peroxidase-dependent cross-linking (step 2) reaction at hyaluronan concentrations of 2.5 mg/ml and above. Uncross-linked tyramine-substituted hyaluronan was characterized after hyaluronidase SD digestion. Cross-linked hydrogels showed increased resistance to digestion by testicular hyaluronidase and hyaluronidase SD with increasing hyaluronan concentration. Cells directly encapsulated within the hydrogels during hydrogel cross-linking remained metabolically active during 7 days of culture similar to cells cultured in monolayer.  相似文献   

14.
CD44 hyaluronan receptor is present on large number of different cell type. It acts as one of the adhesion proteins, binding to hyaluronan and is known to play a part in cell migration from vessels in inflammation. The aim of this study was to examine the presence and distribution of CD44 in interface membrane in aseptic loosening. Immunohistochemistry (IHC) using human anti-mouse CD44 antibody studied 20 aseptically loosened interface samples. Extracted protein from all cases was examined by Western blot and RT-PCR. CD44 was detected in 85% of interfaces by IHC and the presence of protein confirmed by blotting and RT-PCR, which showed the mRNA level for CD44. CD44 was expressed by macrophage, multinucleated giant cells, mast cells and lymphocytes. Further studies are needed to characterise the role of this molecule in the inflammatory response to wear debris in aseptic loosening.  相似文献   

15.
The present study investigates the development of methyl cellulose (MC)–sodium alginate (SA)–montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2–4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.  相似文献   

16.
An investigation on the effect ofβ-cyclodextrin (CD) in both free and inclusion-complexed forms with a guest anionic metal complex, dioxalatodiaquochromate(III) (DDC), on the characteristics of conducting polyaniline (PANI) is carried out. Four materials, PANI (i.e. PANI-SO 4 2− ), PANI-DDC, PANI-CD and PANI-CD + DDC were prepared byin situ chemical oxidative polymerization in aqueous H 2SO4 at pH 1 and subjected to electrical conductivity and spectral (IR and UV-vis bd measurements. DDC and CD when separately incorporated, reduce the conductivity of PANI by about half whilst their inclusion complex CD + DDC enhances it. Spectral characterization reveals that DDC as a dopant and CD as an encapsule exhibit their effects through adverse interaction with imine-amine N centres and benzenoid moiety of PANI. The inclusion complex CD + DDC, on the contrary, functions as a dopant by lying in between the chains and seems to promote the extended conformation of PANI chain and hence theπ -electron delocalization. Exposure of the material to methanol vapour causes a decrease in conductivity in PANI and PANI-CD while an increase in PANI-CD + DDC. This study makes explicit the distinct role of CD as an encapsule and CD + DDC inclusion complex as a dopant in altering the electrical property of PANI.  相似文献   

17.
Objective: Development of a hydrogel containing rutin at 0.025% (w/w) and evaluation of its in vivo efficacy in cutaneous wound healing in rats.

Methods: Hydrogels were prepared using Carbopol Ultrez® 10 NF and an aqueous dispersion of rutin in polysorbate 80. Hydrogels were characterized by means of pH measurement, rheological and spreadability analysis and rutin content determination by liquid chromatography. The in vivo healing effect was evaluated through the regression of skin lesions in rats and by analysis of oxidative stress.

Results and discussion: Hydrogels showed adequate pH values (5.50–6.50) and pseudoplastic non-Newtonian behavior. After 5 days of treatment of wounds, hydrogels containing rutin presented a higher decrease in the wound area compared to the control hydrogels. Analysis of the oxidative stress showed a decrease in lipid peroxidation and protein carbonyl content as well as an increase in catalase activity after the treatment with the hydrogel containing rutin. Furthermore, this treatment increased total protein levels.

Conclusion: This study shows for the first time the feasibility of using dermatological formulations containing rutin to improve skin wound healing.  相似文献   

18.
Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings.  相似文献   

19.
The present study reports construction of wound dressing materials from degradable natural polymers such as hydroxy derivatives of carboxylic acids (PHAs) and 3-hydroxybutyrate/4-hydroxybutyrate [P(3HB/4HB)] as copolymer. The developed polymer films and electrospun membranes were evaluated for its wound healing properties with Grafts—elastic nonwoven membranes carrying fibroblast cells derived from adipose tissue multipotent mesenchymal stem cells. The efficacy of nonwoven membranes of P(3HB/4HB) carrying the culture of allogenic fibroblasts was assessed against model skin defects in Wistar rats. The morphological, histological and molecular studies revealed the presence of fibroblasts on dressing materials which facilitated wound healing, vascularization and regeneration. Further it was also observed that cells secreted extracellular matrix proteins which formed a layer on the surface of membranes and promoted the migration of epidermal cells from the neighboring tissues surrounding the wound. The wounds under the P(3HB/4HB) membrane carrying cells healed 1.4 times faster than the wounds under the cell-free membrane and 3.5 times faster than the wounds healing under the eschar (control).The complete wound healing process was achieved at Day 14. Thus the study highlights the importance of nonwoven membranes developed from degradable P(3HB/4HB) polymers in reducing inflammation, enhancing angiogenic properties of skin and facilitating better wound healing process.  相似文献   

20.
Therapeutic vaccines possess particular advantages and show promising potential to combat burdening diseases, such as acquired immunodeficiency syndrome, hepatitis, and even cancers. An efficient therapeutic vaccine would strengthen the immune system and eventually eliminate target cells through cytotoxic T lymphocytes (CTLs). Unfortunately, insufficient efficacy in triggering such an adaptive immune response is a problem that remains unsolved. To achieve efficient cellular immunity, antigen‐presenting cells must capture and further cross‐present disease‐associated antigens to CD8 T cells via major histocompatibility complex I molecules. Here, a biomimetic strategy is developed to fabricate hierarchical ovalbumin@CaCO3 nanoparticles (OVA@NP, ≈500 nm) under the templating effect of antigen OVA. Taking advantage of the unique physicochemical properties of crystalline vaterite, cluster structure, and high loading, OVA@NP can efficiently ferry cargo antigen to dendritic cells and blast lysosomes for antigen escape to the cytoplasm. In addition, the first evidence that the physical stress from generated CO2 induces autophagy through the LC3/Beclin 1 pathways is presented. These outcomes cooperatively promote antigen cross‐presentation, elicit CD8 T cell proliferation, ignite a potent and specific CTL response, and finally achieve prominent tumor therapy effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号