首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anodic film morphologies on aluminium aerospace alloys are strongly influenced by alloying elements. The present study uses model alloys to interpret the early stages of anodizing of AA2024-T3 and AA7075-T6 aluminium alloys in 0.4 M sulphuric acid electrolyte. Further, coupled model alloys, representative of matrix and second phase regions, are employed as alloy analogues. The findings enable assignment of transient anodic currents during potentiodynamic polarization of the commercial alloys to oxidation of Al2CuMg phase at 0 V SCE and of Al2Cu, Al7Cu2Fe and Al–Cu–Fe phases at 5–6 V SCE. The phases that oxidize at the latter potential also cause voltage arrests during galvanostatic anodizing.  相似文献   

2.
The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in an acidic NaCl solution is investigated by electrochemical investigation and morphology characterization. Localized corrosion initiated from intermetallic particles could be observed in the solution with and without NaNO3. The nitrate plays a controversial role in the corrosion of 7075-T651 aluminum alloy. It could enhance the performance of passive film and reduce the probability of pitting corrosion initiation. However, the pitting corrosion would be promoted by nitrate, once stable pitting corrosion is initiated.  相似文献   

3.
采用电化学测量技术,研究了等径转角挤压方法(ECAP)变形后的AA7075-T651铝合金在NaCl溶液中的电化学腐蚀行为。结果表明:同道次ECAP状态下,随着Cl-浓度增加,AA7075-T651的自腐蚀电位和点蚀电位负移,耐腐蚀性能降低;而在同浓度NaCl溶液中,随着ECAP挤压道次增加,AA7075-T651的自腐蚀电位和点蚀电位正移,耐腐蚀性能提高。本次试验也表明了Cl-浓度对于该铝合金耐腐蚀性能的影响程度要远超过ECAP技术。  相似文献   

4.
In this study, pure Ti was coated on Zr55Al10Ni5Cu30 bulk metallic glass (BMG) using a physical vapour deposition (PVD) technique with magnetron sputtering. Microstructures of Ti coating, BMG substrate and interface were investigated by conventional and high-resolution transmission electron microscopy (TEM and HREM). The electrochemical behavior of Ti-coated Zr55Al10Ni5Cu30 BMG was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in Hanks' solution. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the coating after electrochemical testing. HRTEM observation reveals that the sputtering Ti coating consists of α-Ti nano-scale particles with the size about 10 nm. The polarization curves revealed that the open-circuit potential shifted to a more positive potential and the passive current density was lower after Ti coating was applied in comparison with that of the monolithic Zr55Al10Ni5Cu30 BMG. Electrochemical impedance spectroscopy (EIS) measurements showed that the Bode plots of Ti-coated Zr55Al10Ni5Cu30 BMG presented one time constant for 1 h and 12 h immersion and two time constants after 24 h immersion. The good bonding condition between Ti coating and Zr55Al10Ni5Cu30 BMG substrate may be responsible for the high corrosion resistance of Ti-coated Zr55Al10Ni5Cu30 BMG.  相似文献   

5.
In this work, a low-cost technique combining MIG welding and lateral powder injection was developed to fabricate B4C particles-reinforced aluminum matrix composite (AMC) layer on a T6 heat-treated 7075 aluminum alloy (AA7075-T6) substrate. The AMC layer was 6-7 mm thick and well bonded to the substrate. The B4C particles were dispersed throughout the AMC layer with an average content of approximately 7 vol.%. No significant reaction products existed either at the particle–matrix interface or in the Al-matrix. In pin-on-disk dry sliding wear tests against Al2O3 grinding wheels, the AMC layer exhibited excellent wear resistance with volume wear rate approximately 1/10-3/10 that of the quenched AISI 1045 steel and only approximately 2-7% that of the AA7075-T6 alloy under the same wear conditions. A small addition of ceramic particles can greatly improve wear resistance, suggesting that this technique has good prospects for a wide variety of applications.  相似文献   

6.
The present paper focuses on the study of SCC behaviour of a new Al–Cu–Li alloy. For this purpose, two conventional media – NaCl and NaCl + H2O2 – were used for comparison with commercial alloys 7075 and 8090. This new alloy shows lower susceptibility to SCC than conventional alloys as it does not undergo environmentally-induced embrittlement in NaCl solutions and in 1 M NaCl + 0.3% H2O2 in which the 7075 and 8090 alloys, respectively, undergo environmentally-induced fracture.Solution composition was modified in order to determine the environmental conditions and strain rates under which this new alloy will crack due to a stress corrosion cracking phenomenon. The addition of 0.6 M sulphates to 1 M NaCl + 0.3% H2O2 solution allows the definition of a range of strain rate (between 10−7 and 10−6 s−1) in which this new alloy undergoes stress corrosion cracking.  相似文献   

7.
The susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys was investigated in aqueous neutral chloride solution for the purpose of comparison using electrochemical noise measurement. The experimentally measured electrochemical noises were analysed based upon the combined stochastic theory and shot-noise theory using the Weibull distribution function. From the occurrence of two linear regions on one Weibull probability plot, it was suggested that there existed two stochastic processes of uniform corrosion and pitting corrosion; pitting corrosion was distinguished from uniform corrosion in terms of the frequency of events in the stochastic analysis. Accordingly, the present analysis method allowed us to investigate pitting corrosion independently. The susceptibility to pitting corrosion was appropriately evaluated by determining pit embryo formation rate in the stochastic analysis. The susceptibility was decreased in the following order: AA2024-T4 (the naturally aged condition), AA7475-T761 (the overaged condition) and AA7075-T651 (the near-peak-aged condition).  相似文献   

8.
Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloride-containing aqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surface before and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change in intermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions of intermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMg particles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structure comprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery of Al2CuMg particles at the early stage of dealloying. Development of trenching in Al–Cu–Fe–Mn–(Si) particle's periphery was not uniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particles was mainly associated with Al2CuMg particles.  相似文献   

9.
An Al 2024 (AA2024-T351) alloy having less Mg and a higher proportion of Cu to Mg (mass ratio ≈3.7) has been characterised to provide input data for microscale and macroscale corrosion models. The Al 2024 alloy microstructure has a significant presence of nanoscale dispersoid and microscale AlCuFeMnSi (2nd phase) intermetallic particles, but a smaller population of microscale S phase (Al2CuMg) and θ phase (Al2Cu) intermetallic particles. Microscale electrochemical data show that pitting potential (SCE) values for 2nd phase, S phase, or matrix overlap significantly. The localised corrosion susceptibility is affected by S and inhomogeneous 2nd phase particles.  相似文献   

10.
The potentiodynamic polarization curves in 0.5 M NaCl solution before and after crystallization of Fe73.5Cu1Nb3Si15.5B7 alloy have been studied in relation to the microstructure and alloy composition. It was shown that the corrosion resistance of the alloy strongly depending on these two factors. The observed decrease in corrosion resistance of the alloy after the heat treatment up to 480 °C in comparison to the corrosion resistance of the alloy in the as prepared state is attributed to the increased inhomogeneity of the alloy that coincides with the first appearance of Fe3Si phase. Further heating (up to 600 °C) resulted in an increase in the number of Fe3Si nanocrystallites and the appearance of a FeCu4 phase. After annealing at 600 °C the lowest corrosion rate, 0.004 mm a−1, was observed. Annealing of the samples at higher temperatures (>600 °C) induced formation of six crystalline phases which proved detrimental to the corrosion resistance of the Fe73.5Cu1Nb3Si15.5B7 alloy. Solid corrosion products were identified on the surface of the samples after anodic polarization.  相似文献   

11.
In this work the influence of pressureless sintering on the Vickers hardness and fracture toughness of ZrO2 reinforced with Al2O3 particles (ATZ) and Al2O3 reinforced with ZrO2 particles (ZTA) has been investigated. The ceramic composites were produced by means of uniaxial compacting at 50 MPa and the green compacts were heated to 1250 °C using a heating rate of 10 °C min−1, then to 1500 °C at 6 °C min−1 and maintained at this temperature during 2 h. After sintering, relative density over 94%, hardness values between 9.5 and 21.9 GPa, and fracture toughness as high as 3.6 MPa m1/2 were obtained. The presence of TZ-3Y particles on the grain boundaries suggests that they inhibit notably the alumina grain growth. The grain sizes of pure Al2O3 and TZ-3Y as well as Al2O3 and TZ-3Y in the 20 wt% Al2O3+80 wt% TZ-3Y composite were 1.27 ± 0.51 μm, 0.57 ± 0.12 μm, 0.65 ± 0.19 μm and 0.41 ± 0.14 μm, respectively. The 20 wt% Al2O3 + 80 wt% ZrO2 + 3 mol% Y2O3 (TZ-3Y) composite showed a hardness of 16.05 GPa and the maximum fracture toughness (7.44 MPa m1/2) with an average grain size of 0.53 ± 0.17 μm. On the other side, the submicron grain size and residual porosity seem to be responsible for the high hardness and fracture toughness obtained. The reported values were higher than those obtained by other authors and are in concordance with international standards that could be suitable for dental applications.  相似文献   

12.
Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare initial pitting events, which appeared on their surfaces. EN analysis was carried out using the power spectral density (PSD) vs frequency. The decrease of the β exponent in PSD graphs indicated a release of spontaneous energy with the progress of pit formation in seawater. The fluctuations were associated with the breakdown and formation of new corrosion layers. The values of β exponent in PSD graphs suggest that corrosion process of AA2219-T42 alloy occurs as a persistent non-stationary process, the dynamics of which is controlled by fractional Brownian motion (fBm), while on AA6061-T6 alloy the corrosion process was dominated by stationary and weakly persistent features, with the contribution of fractional Gaussian noise (fGn). After the exposure in seawater, SEM-EDX analysis revealed insoluble intermetallic particles on the alloys, rich in Cu or Fe and irregularly distributed. The preferential dissolution of Mg and Al occurs from the S-phase (Al2CuMg) of AA2219-T42 alloy.  相似文献   

13.
The constituent particles (also called inclusions) play an important role in the deformation behavior of Al 7075 alloys. The majority of inclusions in Al 7075 alloys can be classified as Fe-bearing and Si-bearing inclusions. Among them Al7Cu2Fe and Mg2Si are predominant. In this study, the mechanical properties of these inclusions and Al 7075 matrix were studied using micropillar compression testing. Micropillars were fabricated by focused ion beam (FIB) milling and were tested using a nanoindenter equipped with a flat tip. For the first time, the stress–strain behavior of these intermetallic particles was obtained experimentally, resulting in the measurement of the compressive failure and yield strength. The stress–strain behavior obtained from pillar compression show that both inclusions possess higher strength than the Al 7075 matrix.  相似文献   

14.
Electrochemical measurements and friction measurements during continuous and intermittent unidirectional sliding tests are used to monitor and to evaluate the surface characteristics of two types of metallic materials characterized by a huge unit cell, namely Al71Cu10Fe9Cr10 and Al3Mg2. The modification of the surface characteristics results from the periodic mechanical removal of a surface film during sliding, and the subsequent (electro)chemical re-growth of a surface film in-between successive sliding contacts. Al71Cu10Fe9Cr10 and Al3Mg2 materials were tested in a phosphate buffer solution pH 7 at 25 °C to compare their depassivation and subsequent repassivation behaviour. The Al3Mg2 material was also tested in a 0.1 M KOH solution pH 13 and 25 °C to reveal the role of constituting metallic elements on the surface film formation. The effect of film formation and removal on the coefficient of friction recorded during unidirectional sliding is discussed.  相似文献   

15.
Mechanically alloyed Al65Cu20Ti15 amorphous alloy powder with or without 10 wt% nano-TiO2 dispersion was consolidated by isothermal spark plasma sintering in the range 200–500 °C with pressure up to 50 MPa. Selected samples were separately cold compacted with 50 MPa pressure and sintered at 500 °C using controlled atmosphere resistance and microwave heating furnaces. Phase and microstructural evolution at appropriate stages of mechanical alloying/blending and sintering was monitored by X-ray diffraction and scanning and transmission electron microscopy. Measurement and comparison of relevant properties (density/porosity, microhardness and yield strength) of the sintered compacts suggest that spark plasma sintering is the most appropriate technique for developing nano-TiO2 dispersed amorphous/nanocrystalline Al65Cu20Ti15 matrix composite for structural application.  相似文献   

16.
研究12 mm厚AA7075-T651铝合金板搅拌摩擦焊接头的疲劳裂纹扩展行为。从搅拌摩擦焊接头以及母材中截取试样,对试样进行疲劳裂纹扩展实验。对搅拌摩擦焊接头以及母材的横向拉伸性能进行评估。用光学显微镜和透射电镜分析焊接接头的显微组织。用扫描电镜观察试样的断裂表面。与母材相比,焊接接头的ΔKcr降低了10×10-3 MPa·m1/2。搅拌摩擦焊AA7075-T651接头的疲劳寿命明显低于母材的,其原因可归结于焊缝区的析出相在搅拌摩擦焊接过程中的溶解。  相似文献   

17.
Multi-stage transformation (MST) in 500 °C annealed Ni-rich Ti49Ni41Cu10 shape memory alloy (SMA) is investigated by differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as solution-treated alloy undergoes B2 ↔ B19 ↔ B19′ two-stage transformations. Ti(Ni,Cu)2 precipitates are formed in 500 °C annealed specimens. Alloy annealed at 500 °C for 6–24 h exhibits MST. This MST is confirmed by DMA tests and is composed of B21 ↔ B191 ↔ B19′1 and B22 ↔ B192 ↔ B19′2 transformations corresponding to the regions near and far from Ti(Ni,Cu)2 precipitates, respectively. Experimental results show that the more the annealing time, the more the B21 ↔ B191 ↔ B19′1 transformations and finally only B21 ↔ B191 ↔ B19′1 transformations retain with the transformation temperatures close to those of Ti50Ni40Cu10 SMA.  相似文献   

18.
An amorphization process in (Cu49Zr45−xAl6+x)100−y−zNiyTiz (x = 1, y, z = 0; 5; 10) induced by ball-milling is reported in the present work. The aim was investigation of the effect of Ni and Ti addition to Cu49Zr45Al6 and Cu49Zr44Al7 based alloys as well as type of initial phases on the amorphization processes. Also the milling time sufficient for obtaining fully amorphous state was determined. The entire milling process lasted 25 h. Drastic structural changes were observed in each alloy after first 5 h of milling. In most cases, after 15 h of milling the powders had fully amorphous structure according to XRD except for those ones, where TEM revealed a few nanosized crystalline particles in the amorphous matrix. In (Cu49Zr45Al6)80Ni10Ti10 alloy the amorphization process took place after 12 h of milling and the amorphous state was stable up to 25 h of milling. In the case of (Cu49Zr44Al7)80Ni10Ti10 alloy the powders have fully amorphous structure between 12 h and 15 h of milling.  相似文献   

19.
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5-60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.  相似文献   

20.
Heat-transfer corrosion behaviour of an ISO 2379 cast Al alloy was studied in antifreeze radiator coolant under heat-rejecting condition. Extensive analyses of microstructures and corroded surfaces were carried out under the optical microscope, scanning electron microscope equipped with energy dispersive spectroscopy and X-ray diffractometer. Heat-rejecting condition led to a cavitation process and cavities were observed within the α-Al matrix. Crevice corrosion was predominant at oxygen depleted regions in heat-transfer corrosion cell. Al2Cu, Al15(Fe,Mn)3Si2 dendrites, Al4Cu2Mg8Si7 and Si phases served as the effective cathodes resulting microgalvanic corrosion at the anodic site of α-Al matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号