首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile sonochemical approach was applied for the large scale synthesis of iron oxide magnetic nanoparticles (NPs) using inexpensive and non-toxic metal salts as reactants. The as-prepared magnetic iron oxide NPs has been characterized by XRD, TEM, EDS, and VSM. X-ray diffraction (XRD) and EDS analysis revealed that Fe3O4 NPs have been successfully synthesized in a single reaction by this simple method. Transmission electron microscopy (TEM) data demonstrated that the particles were narrow range in size distribution with 11 nm average particle size. Moreover, TEM measurements also show that the synthesized nanoparticles are almost spherical in shape. The magnetization curve from vibrating sample magnetometer (VSM) measurement shows that as-synthesized NPs were nearly superparamagnetic in magnetic properties with very low coercivity, and magnetization values were 80 emu/g, which is very near to the bulk value of iron oxide. The estimated value of mass susceptibility of as-synthesized nanoparticles is Xg = 5.71 × 10− 4 m3/kg.  相似文献   

2.
A novel approach has been developed to synthesize gold-coated iron oxide nanoparticles. Fe3O4 nanoparticles were initially prepared by co-precipitation method and subsequently coated with gold layer under oleylamine reduction of AuCl4 at room temperature. The core-shell nanoparticles showed magnetic recoverable catalytic activity for the reduction of 4-nitrophenol with NaBH4.  相似文献   

3.
An easy route is described for the synthesis of monodisperse oleic acid-coated Fe3O4 nanoparticles with uniform size and shape via a thermal decomposition of Fe(acac)3 in the presence of oleic acid (OA). The prepared Fe3O4 samples are characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometer. The results show that the resulting OA-coated Fe3O4 nanoparticles have an average diameter of about 24 nm and an OA layer, around 3 nm in thickness. The magnetic saturation value of the prepared OA-coated Fe3O4 nanoparticles is determined to be 78.68 emu/g, indicating a well-established superparamagnetic property.  相似文献   

4.
The poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)–Fe3O4 (PEDOT/PSS–Fe3O4) nanoparticles have been prepared by using polystyrene sulfonic sodium (NaPSS) as a dispersant and dopant. The characterization of nanocomposites was investigated by transmission electron microscope, X-ray diffraction, UV spectroscopy, electrochemical study, four-probe, thermogravimetric analysis and magnetic property measurement system. XRD revealed the presence of spinel phase of Fe3O4 and the average size was calculated to be about 12 nm. The conductivity of nanocomposites at room temperature is excellent and it depends on the Fe3O4 content. The thermal stability of composites is outstanding. Higher saturation magnetization of 6.47 emu g−1 (20 wt.% Fe3O4) was observed at 300 K.  相似文献   

5.
Nickel oxide (NiO), iron (III) oxide (Fe2O3), and mixed oxide (Ni0.04Zn0.96O and Fe0.03Zn0.97O) nanoparticles were synthesized by modified sol–gel method. The nanoparticle structural and morphological properties were investigated by infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), and Mössbauer spectroscopy. The mixed oxides were characterized by energy-dispersive X-ray spectroscopy (EDX). The oxide precursor powders were analyzed by thermogravimetry (TG) and differential scanning calorimetry (DSC). The average sizes of the obtained NiO and Ni0.04Zn0.96O nanocrystallites were evaluated by X-ray line broadening using Scherrer's equation and were found to be 36 and 23 nm, respectively. Fe2O3 and Fe0.03Zn0.97O nanoparticles presented similar sizes, around 19 nm. EDX spectroscopy indicated that the calculated compositions of the mixed oxides were nearly consistent with their estimated molar ratios.  相似文献   

6.
Azo dyes are widely used in industries and their release in the environment contributes to the pollution of effluents. The authors aim to develop a new eco‐friendly water treatment method for the degradation of azo dyes based on in situ magnetic separation and immobilisation of bacterial cells. The immobilisation was achieved using superparamagnetic Fe3 O4 nanoparticles and offers the possibility of reusing bacteria by magnetic separation for several degradation cycles. The iron oxide nanoparticles were synthesised by reverse co‐precipitation. The Gram‐positive bacteria Bacillus subtilis were immobilised using iron–oxide nanoparticles by adsorption and then separated with an external magnetic field. Transmission electron microscopy observation showed that the particles'' diameter was ∼20 nm with a narrow size distribution. Moreover, the iron–oxide nanoparticles were adsorbed onto the surface in order to coat the cells. B. subtilis has proved its ability to decolorise and degrade several azo dyes at different values of pH, with the highest decolorisation rate for Congo red. Furthermore, immobilised cells have a degradation activity similar to that of free cells. The system provided a degradation rate up to 80% and could be reused for seven batch cycles.Inspec keywords: biotechnology, microorganisms, pH, adsorption, iron compounds, superparamagnetism, transmission electron microscopy, ultraviolet spectra, chemical technology, wastewater treatment, effluents, dyes, magnetic separation, iron, magnetic particles, decontaminationOther keywords: degradation rate, immobilisation, magnetic nanoparticles, azo dyes, eco‐friendly water treatment method, degradation cycles, Gram‐positive bacteria, iron–oxide nanoparticles, external magnetic field, immobilised cells, degradation activity, magnetic separation, effluents, bacterial cells, Fe3 O4   相似文献   

7.
Iron oxide films were grown on sapphire substrates by pulsed laser deposition at substrate temperatures between 100 and 700 °C. X-ray diffraction, Raman spectroscopy, and vibrational sample magnetometer analysis revealed that structural and magnetic properties of the iron oxide films strongly depend on the substrate temperature during growth. Single phase Fe3O4 film was successfully grown on sapphire substrate at a substrate temperature of 500 °C. The saturation magnetic moment of the single phase Fe3O4 film is 499 emu/cm3, which is in good agreement with the value reported for bulk magnetite, suggesting the Fe3O4 film is of high crystal quality without antiphase boundaries.  相似文献   

8.
Heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by a two-step method. First, Fe3O4 nanoparticles with the size of ca. 10 nm were synthesized by chemical method at room temperature and then heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by hydrothermal method at 180 °C for 24 h with the addition of 10 wt% Fe3O4 nanoparticles into the precursor suspension of Bi2O2CO3. The pH value of synthesis suspension was adjusted to 4 and 6 with the addition of 2 M NaOH aqueous solution. By controlling the pH of synthesis suspension at 4 and 6, sphere- and flower-like Fe3O4/Bi2O2CO3 photocatalysts were obtained, respectively. Both photocatalysts demonstrate superparamagnetic behavior at room temperature. The UV–vis diffuse reflectance spectra of the photocatalysts confirm that all the heterostructured photocatalysts are responsive to visible light. The photocatalytic activity of the heterostructured photocatalysts was evaluated for the degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution over the photocatalysts under visible light irradiation. The heterostructured photocatalysts prepared in this study exhibit highly efficient visible-light-driven photocatalytic activity for the degradation of MB and MO, and they can be easily recovered by applying an external magnetic field.  相似文献   

9.
Fe3O4/hydroxyapatite (HAP) nanoparticles have been developed as a novel photocatalyst support, based on the embedment of magnetic Fe3O4 particles into HAP shell via homogeneous precipitation method. The resultant nanoparticles were characterized by transmission electron microscope (TEM) and X-ray diffraction (XRD). These particles were almost spherical in shape, rather monodisperse and have a unique size of about 25 nm in diameter. The effect of calcination temperature on magnetic property and photocatalytic activity of Fe3O4/HAP nanoparticles was investigated in detail. The obtained results showed that the Fe3O4/HAP nanoparticles calcined at 400 °C possessed good magnetism and photocatalytic activity in comparison with that calcined at other temperatures.  相似文献   

10.
Carbon-encapsulated iron oxides (Fe3O4/C) with a core/shell structure have been successfully synthesized by using a simple two-step hydrothermal method at 180 °C. Fe3O4 core nanoparticles were prepared by coprecipitation under two conditions. Synthesized nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM images and FTIR results prove that carbon coated iron oxide is formed and the estimated size for most of them is below 11 nm, which was consistent with the XRD result. The Williamson–Hall (W–H) method has been used to calculate crystallite sizes and lattice strain based on the peak broadening of the Fe3O4 and Fe3O4/C nanoparticles. The results of VSM imply that the Fe3O4 core and core–shell nanoparticles are superparamagnetic. The saturation magnetization of Fe3O4 and Fe3O4/C are 49 emu/gr and 40 emu/gr, respectively. The magnetic behaviors reveal that the amorphous carbon shell can decrease the saturation magnetization of Fe3O4 nanoparticles due to core–shell interface effects and shielding.  相似文献   

11.
We report a simple method for shape-controlled synthesis of iron oxide spinels such as magnetite (Fe3O4) and maghemite (γ-Fe2O3) nanostructures using a thermoresponsive polymer poly(vinyl methyl ether) (PVME) by the alkaline hydrolysis of iron salt at low temperature (20 °C). Microscopic analysis confirmed the formation of needle- and flower-shaped iron oxide nanostructures depending on reaction conditions. High-resolution transmission electron microscopic analysis of the needle- and flower-shaped nanostructures as well as their corresponding selected area electron diffraction patterns revealed that the formed nanostructures are crystalline in nature. X-ray diffraction study reveals the formation of well-crystalline pure Fe3O4 and γ-Fe2O3 nanostructures under different reaction conditions. Fourier transform Infra-red spectroscopic analysis confirms the adsorption of PVME on the surface of iron oxide nanostructures. Finally, the magnetic properties of γ-Fe2O3 and Fe3O4 nanostructures is studied that shows the superparamagnetic behavior of the formed iron oxide nanostructures.  相似文献   

12.
The present study demonstrated the preparation of three different acid‐functionalised magnetic nanoparticles (MNPs) and evaluation for their catalytic efficacy in hydrolysis of cellobiose. Initially, iron oxide (Fe3 O4)MNPs were synthesised, which further modified by applying silica coating (Fe3 O4 ‐MNPs@Si) and functionalised with alkylsulfonic acid (Fe3 O4 ‐MNPs@Si@AS), butylcarboxylic acid (Fe3 O4 ‐MNPs@Si@BCOOH) and sulphonic acid (Fe3 O4 ‐MNPs@Si@SO3 H) groups. The Fourier transform infrared analysis confirmed the presence of above‐mentioned acid functional groups on MNPs. Similarly, X‐ray diffraction pattern and energy dispersive X‐ray spectroscopy analysis confirmed the crystalline nature and elemental composition of MNPs, respectively. TEM micrographs showed the synthesis of spherical and polydispersed nanoparticles having diameter size in the range of 20–80 nm. Cellobiose hydrolysis was used as a model reaction to evaluate the catalytic efficacy of acid‐functionalised nanoparticles. A maximum 74.8% cellobiose conversion was reported in case of Fe3 O4 ‐MNPs@Si@SO3 H in first cycle of hydrolysis. Moreover, thus used acid‐functionalised MNPs were magnetically separated and reused. In second cycle of hydrolysis, Fe3 O4 ‐MNPs@Si@SO3 H showed 49.8% cellobiose conversion followed by Fe3 O4 ‐MNPs@Si@AS (45%) and Fe3 O4 ‐MNPs@Si@BCOOH (18.3%). However, similar pattern was reported in case of third cycle of hydrolysis. The proposed approach is considered as rapid and convenient. Moreover, reuse of acid‐functionalised MNPs makes the process economically viable.Inspec keywords: scanning electron microscopy, catalysis, magnetic separation, magnetic particles, silicon compounds, iron compounds, nanomagnetics, coatings, X‐ray chemical analysis, nanoparticles, X‐ray diffraction, nanofabrication, Fourier transform infrared spectra, organic compounds, nanocompositesOther keywords: catalytic efficacy, alkylsulfonic acid, butylcarboxylic acid, energy dispersive X‐ray spectroscopy analysis, spherical polydispersed nanoparticles, cellobiose hydrolysis, acid‐functionalised MNPs, acid functional groups, cellobiose conversion, acid‐functionalised magnetic nanoparticle, silica coating, sulphonic acid, Fourier transform infrared analysis, SEM micrograph, X‐ray diffraction pattern, size 20.0 nm to 80.0 nm, Fe3 O4 , Si, SiO2   相似文献   

13.
This study presents a novel signal amplification method for high‐sensitive electrochemical immunosensing. Gold (Au)/N ‐trimethyl chitosan (TMC)/iron oxide (Fe3 O4) (shell/shell/core) nanocomposite was used as a tracing tag to label antibody. The tag was shown to be capable of amplifying the recognition signal by high‐density assembly of Au nanoparticles (NPs) on TMC/Fe3 O4 particles. The remarkable conductivity of AuNPs provides a feasible pathway for electron transfer. The method was found to be simple, reliable and capable of high‐sensitive detection of human serum albumin as a model, down to 0.2 pg/ml in the range of 0.25–1000 pg/ml. Findings of the present study would create new opportunities for sensitive and rapid detection of various analytes.Inspec keywords: gold, filled polymers, conducting polymers, iron compounds, magnetic particles, nanoparticles, nanocomposites, nanosensors, electrochemical sensors, proteins, molecular biophysics, biomagnetism, biosensorsOther keywords: signal amplification strategy, gold‐N‐trimethyl chitosan‐iron oxide magnetic composite nanoparticles, tracer tag, high‐sensitive electrochemical detection, high‐sensitive electrochemical immunosensing, antibody, high‐density assembly, AuNP conductivity, electron transfer, human serum albumin, FeO‐Au  相似文献   

14.
Non-alcoholic steatohepatitis is a burgeoning health problem. To diagnose NASH with magnetic resonance imaging (MRI), an effective contrast agent, a stable suspension of superparamagnetic Fe3O4 nanoparticles, were newly developed. The negatively charged Fe3O4 nanoparticles were coated with positive chitosan (CS) firstly, and then assembled with poly(vinyl acetate-methylacrylic acid) (P(VAc-MAA)). Transmission electron microscope and dynamic light scattering confirmed that the obtained P(VAc-MAA)/CS/Fe3O4 nanoparticles had a spherical or ellipsoidal morphology with an average diameter in the range of 14–20 nm. The superparamagnetic property and spinel structure of the Fe3O4 nanoparticles were well preserved due to the protection of the P(VAc-MAA)/CS layers on the surface of the Fe3O4 nanoparticles. The in vivo rat experiments confirmed that the P(VAc-MAA)/CS/Fe3O4 nanoparticles were an effective contrast agent for MRI to diagnose NASH.  相似文献   

15.
The iron oxide nanoparticles have a great attraction in biomedical applications due to their non-toxic role in the biological systems. The iron oxide nanoparticles have both magnetic behaviour and semiconductor property which lead to multifunctional biomedical applications. The iron oxide nanoparticles used in biomedical fields such as antibacterial, antifungal and anticancer were reviewed. The uses of hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles, for an inhibition time in biological activities, are listed in this work. Also, this review explains the use of iron oxide nanoparticles in the biomedical fields with particular attention to the application of hematite and superparamagnetic iron oxide nanoparticles. In this review, analysis reveals that the role of iron oxide in biological activity is good due to its biocompatibility, biodegradability, ease of synthesis and different magnetic behaviours. The change of properties of iron oxide nanoparticles such as particle size, morphology, surface, agglomeration and electronic properties has specific impact in biomedical application. The review mainly focused in and discussed about antibacterial, anticancer, bone marrow and cell labelling activities. From this review work, the iron oxide nanoparticle may be specialised in particular bacterial and cancer treatments. Also discussed are the iron oxide nanoparticle-specific biomedical applications like human placenta, insulin and retinal locus treatments.  相似文献   

16.
Iron oxide nanoparticles were synthesized by co-precipitation in air atmosphere at different temperatures and their structural and magnetic properties were investigated. The mean particle sizes of iron oxide nanoparticles were calculated from the X-ray diffraction (XRD) patterns using the Scherrer equation. Fourier transform infrared spectroscopy analysis exhibited the vibration bands at 563 cm?1 and 620 cm?1 confirming the formation of Fe3O4 and ??-Fe2O3, respectively. Morphological observation was made by a transmission electron microscope and the particle size of iron oxide nanoparticles was found to be around 9 nm which is consistent with the particle size calculated according to the XRD patterns. It was observed that the intensity of the peaks in the patterns and crystallinity increased as the temperature increased. Magnetization curves showed zero coercivities indicating that the samples are superparamagnetic.  相似文献   

17.
Uniform Fe3O4 nanoparticles with diameters of 3-5 nm are successfully decorated onto the external walls of multiwall carbon nanotubes (MWCNTs) by in situ high-temperature decomposition of Fe(acac)3 in polyol solution under the irradiation of microwave. With this method, reaction time of forming Fe3O4-MWCNTs nanocomposites has been significantly shortened to 15 min. The resulting Fe3O4-MWCNTs nanocomposites show superparamagnetic property at room temperature and can be remained as stable aqueous dispersion for 2 months. Longitudinal relaxivity (r1) and transverse relaxivity (r2) of the magnetic MWCNTs are 8.34 Fe mM−1 S−1 and 146 Fe mM−1 S−1 respectively. The much higher r2 value and the obvious change in the gray scale of MR images confer the Fe3O4-MWCNTs nanocomposites as potential candidates for T2-weighted MRI contrast agents.  相似文献   

18.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

19.
For the synthesis of Fe3O4@Tween20 nanocomposite, two surfactants (Tween20 and oleic acid) were used to overcome the aggregation. The nanoparticles were used to prepare a water-based Fe3O4@Tween20 nanocomposite using oleic acid and Tween20 as surfactants ( Fe3O4 colloidal superparticles were developed by introducing Tween20 as a surface modification agent to maintain the colloidal stability of the F e 3O4 superparamagnetic nanoparticles (SPION)). Vaseline and the synthesized iron oleate were used for the polyol synthesis of Fe3O4@Tween20 nanocomposite. The product has superparamagnetic property. Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) proved the presence of both surfactants on the surface of the Fe3O4 nanoparticles. The product may have potential use in magnetic resonance imaging and hyperthermia.  相似文献   

20.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号