首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high performance communication facility, called theGigaE PM, has been designed and implemented for parallel applications on clusters of computers using a Gigabit Ethernet. The GigaE PM provides not only a reliable high bandwidth and low latency communication, but also supports existing network protocols such as TCP/IP. A reliable communication mechanism for a parallel application is implemented on the firmware on a NIC while existing network protocols are handled by an operating system kernel. A prototype system has been implemented using an Essential Communications Gigabit Ethernet card. The performance results show that a 58.3 μs round trip time for a four byte user message, and 56.7 MBytes/sec bandwidth for a 1,468 byte message have been achieved on Intel Pentium II 400 MHz PCs. We have implemented MPICH-PM on top of the GigaE PM, and evaluated the NAS parallel benchmark performance. The results show that the IS class S performance on the GigaE PM is 1.8 times faster than that on TCP/IP. Shinji Sumimoto: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He received BS degree in electrical engineering from Doshisha University. His research interest include parallel and distributed systems, real-time systems, and high performance communication facilities. He is a member of Information Processing Society of Japan. Hiroshi Tezuka: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include real-time systems and operating system kernel. He is a member of the Information Processing Society of Japan, and Japan Society for Software Science and Technology. Atsushi Hori, Ph.D.: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His current research interests include parallel operating system. He received B.S. and M.S. degrees in Electrical Engineering from Waseda University, and received Ph.D. from the University of Tokyo. He worked as a researcher in Mitsubishi Research Institute from 1981 to 1992. Hiroshi Harada: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include distributed/parallel systems and distributed shared memory. He received BS degree in physics from Science University of Tokyo. He is a member of ACM and Information Processing Society of Japan. Toshiyuki Takahashi: He is a Researcher at Real World Computing Partnership since 1998. He received his B.S. and M.S. from the Department of Information Sciences of Science University of Tokyo in 1993 and 1995. He was a student of the Information Science Department of the University of Tokyo from 1995 to 1998. His current interests are in meta-level architecture for programming languages and high-performance software technologies. He is a member of Information Processing Society of Japan. Yutaka Ishikawa, Ph.D.: He is the chief of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He is currently temporary retirement from Electrotechnical Laboratory, MITI. His research interests include distributed/parallel systems, object-oriented programming languages, and real-time systems. He received the B.S., M.S. and Ph.D degrees in electrical engineering from Keio University. He is a member of the IEEE Computer Society, ACM, Information Processing Society of Japan, and Japan Society for Software Science and Technology.  相似文献   

2.
We propose a new method for user-independent gesture recognition from time-varying images. The method uses relative-motion extraction and discriminant analysis for providing online learning/recognition abilities. Efficient and robust extraction of motion information is achieved. The method is computationally inexpensive which allows real-time operation on a personal computer. The performance of the proposed method has been tested with several data sets and good generalization abilities have been observed: it is robust to changes in background and illumination conditions, to users’ external appearance and changes in spatial location, and successfully copes with the non-uniformity of the performance speed of the gestures. No manual segmentation of any kind, or use of markers, etc. is necessary. Having the above-mentioned features, the method could be successfully used as a part of more refined human-computer interfaces. Bisser R. Raytchev: He received his BS and MS degrees in electronics from Tokai University, Japan, in 1995 and 1997 respectively. He is currently a doctoral student in electronics and information sciences at Tsukuba University, Japan. His research interests include biological and computer vision, pattern recognition and neural networks. Osamu Hasegawa, Ph.D.: He received the B.E. and M.E. degrees in Mechanical Engineering from the Science University of Tokyo, in 1988, 1990 respectively. He received Ph.D. degree in Electrical Engineering from the University of Tokyo, in 1993. Currently, he is a senior research scientist at the Electrotechnical Laboratory (ETL), Tsukuba, Japan. His research interests include Computer Vision and Multi-modal Human Interface. Dr. Hasegawa is a member of the AAAI, the Institute of Electronics, Information and Communication Engineers, Japan (IEICE), Information Processing Society of Japan and others. Nobuyuki Otsu, Ph.D.: He received B.S., Mr. Eng. and Dr. Eng. in Mathematical Engineering from the University of Tokyo in 1969, 1971, and 1981, respectively. Since he joined ETL in 1971, he has been engaged in theoretical research on pattern recognition, multivariate data analysis, and applications to image recognition in particular. After taking positions of Head of Mathematical Informatics Section (since 1985) and ETL Chief Senior Scientist (since 1990), he is currently Director of Machine Understanding Division since 1991, and concurrently a professor of the post graduate school of Tsukuba University since 1992. He has been involved in the Real World Computing program and directing the R&D of the project as Head of Real World Intelligence Center at ETL. Dr. Otsu is members of Behaviormetric Society and IEICE of Japan, etc.  相似文献   

3.
This paper proposes a new, efficient algorithm for extracting similar sections between two time sequence data sets. The algorithm, called Relay Continuous Dynamic Programming (Relay CDP), realizes fast matching between arbitrary sections in the reference pattern and the input pattern and enables the extraction of similar sections in a frame synchronous manner. In addition, Relay CDP is extended to two types of applications that handle spoken documents. The first application is the extraction of repeated utterances in a presentation or a news speech because repeated utterances are assumed to be important parts of the speech. These repeated utterances can be regarded as labels for information retrieval. The second application is flexible spoken document retrieval. A phonetic model is introduced to cope with the speech of different speakers. The new algorithm allows a user to query by natural utterance and searches spoken documents for any partial matches to the query utterance. We present herein a detailed explanation of Relay CDP and the experimental results for the extraction of similar sections and report results for two applications using Relay CDP. Yoshiaki Itoh has been an associate professor in the Faculty of Software and Information Science at Iwate Prefectural University, Iwate, Japan, since 2001. He received the B.E. degree, M.E. degree, and Dr. Eng. from Tokyo University, Tokyo, in 1987, 1989, and 1999, respectively. From 1989 to 2001 he was a researcher and a staff member of Kawasaki Steel Corporation, Tokyo and Okayama. From 1992 to 1994 he transferred as a researcher to Real World Computing Partnership, Tsukuba, Japan. Dr. Itoh's research interests include spoken document processing without recognition, audio and video retrieval, and real-time human communication systems. He is a member of ISCA, Acoustical Society of Japan, Institute of Electronics, Information and Communication Engineers, Information Processing Society of Japan, and Japan Society of Artificial Intelligence. Kazuyo Tanaka has been a professor at the University of Tsukuba, Tsukuba, Japan, since 2002. He received the B.E. degree from Yokohama National University, Yokohama, Japan, in 1970, and the Dr. Eng. degree from Tohoku University, Sendai, Japan, in 1984. From 1971 to 2002 he was research officer of Electrotechnical Laboratory (ETL), Tsukuba, Japan, and the National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan, where he was working on speech analysis, synthesis, recognition, and understanding, and also served as chief of the speech processing section. His current interests include digital signal processing, spoken document processing, and human information processing. He is a member of IEEE, ISCA, Acoustical Society of Japan, Institute of Electronics, Information and Communication Engineers, and Japan Society of Artificial Intelligence. Shi-Wook Lee received the B.E. degree and M.E. degree from Yeungnam University, Korea and Ph.D. degree from the University of Tokyo in 1995, 1997, and 2001, respectively. Since 2001 he has been working in the Research Group of Speech and Auditory Signal Processing, the National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan, as a postdoctoral fellow. His research interests include spoken document processing, speech recognition, and understanding.  相似文献   

4.
We have developed a high-throughput, compact network switch (the RHiNET-2/SW) for a distributed parallel computing system. Eight pairs of 800-Mbit/s×12-channel optical interconnection modules and a CMOS ASIC switch are integrated on a compact circuit board. To realize high-throughput (64 Gbit/s) and low-latency network, the SW-LSI has a customized high-speed LVDS I/O interface, and a high-speed internal SRAM memory in a 784-pin BGA one-chip package. We have also developed device implementation technologies to overcome the electrical problems (loss and crosstalk) caused by such high integration. The RHiNET-2/SW system enables high-performance parallel processing in a distributed computing environment. Shinji Nishimura: He is a researcher in the Department of Network System at the Central Research Laboratory, Hitachi Ltd., at Tokyo. He obtained his bachelors degree in Electronics Engineering from the University of Tokyo in 1989, and his M.E. from the University of Tokyo in 1991. He joined a member of the Optical Interconnection Hitachi Laboratory from 1992. His research interests are in hardware technology for the optical interconnection technologies in the computer and communication systems. Katsuyoshi Harasawa: He is a Senior Enginner of Hitachi Communication Systems Inc. He obtained his bachelors degree in Electrical Engineering from Tokyo Denki University. He is a chief of development of the devices and systems for the optical telecommunication. He was engaged in Development of Optical Reciever and Transmitter module. He joined RWCP project from 1997. His research interests are in hardward technology for optical interconnection in distributed parallel computing system (RHiNET). Nobuhiro Matsudaira: He is a engineer in the Hitachi Communication Systems, Inc. He obtained his bachelors degree in Mercantile Marine Engineering from the Kobe University of Mercantile Marine in 1986. He was engaged in Development of Optical Reciever and Transmitter module at 2.4 Gbit/s to 10Gbit/s. He joined RWCP project from 1998. His reserch interests are in hardware technology for the optical interconnection technology in the computer and communication systems. Shigeto Akutsu: He is a staff in Hitachi Communication Systems Inc. He obtained his bachelors degree in Electronics from Kanagawa University, Japan in 1998. His research interests are hardware technology for the optical interconnection technology in the computer and communication systems. Tomohiro Kudoh, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1992. He has been chief of the parallel and distributed architecture laboratory, Real World Computing Partnership since 1997. His research interests include the area of parallel processing and network for high performance computing. Hiroaki Nishi: He received B.E., M.E. from Keio University, Japan, in 1994, 1996, respectively. He joined Parallel & Distributed Architecture Laboratory, Real World Computing Partnership in 1999. He is currently working on his Ph.D. His research interests include area of interconnection networks. Hideharu Amano, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1986. He is now an Associate Professor in the Department of Information and Computer Science, Keio University. His research interests include the area of parallel processing and reconfigurable computing.  相似文献   

5.
Although a technique of relevance feedback is common in the field of information retrieval (IR), the feedback is usually done by means of query refinement; restructuring of the information space has not been attempted yet. The restructuring not only allows useful applications such as clustering but also is indispensable for IR if a modeling function employs correlation of terms. In this paper we present a new method of relevance feedback through the restructuring of the information space. Our method adapts document space to the user’s mental model by manipulating a dictionary vector. Therefore, user’s viewpoint is preserved after a series of retrieval processes and reused for retrieval performed later. We show its effectiveness through the retrieval experiments on FAQ (Frequntly Asked Questions) documents. Tomoko Murakami: She obtained her bachelor’s degree in Engineering from Aoyama Gakuin University in 1996, and her master’s degree in Media and Governance from Keio University in 1998. In 1998 she joined Human Interface Labolatory, Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Japan. Her research interests are in Machine Learning, especially Inductive Logic Programming. She is a member of JSAI. Ryohei Orihara, Ph.D.: He is a research scientist at Human Interface Laboratory, Corporate Research & Development Center, Toshiba Corporation. He obtained his bachelor’s degree and master’s degree in Engineering and Ph.D. from University of Tsukuba in 1986, 1988 and 1999 respectively. His current research interests include machine learning, creativity support system, analogical reasoning and metaphor understanding. He was a visiting researcher at University of Toronto from 1993 to 1995. He is a member of IPSJ, JSAI and JSSST. He is presently on the editorial committee of the Journal of JSAI.  相似文献   

6.
CORE: a content-based retrieval engine for multimedia information systems   总被引:5,自引:0,他引:5  
Rapid advances in multimedia technology necessitate the development of a generic multimedia information system with a powerful retrieval engine for prototyping multimedia applications. We develop a content-based retrieval engine (CORE) that makes use of novel indexing techniques for multimedia object retrieval. We formalize the concepts related to multimedia information systems such as multimedia objects and content-based retrieval. We bring out the requirements and challenges of a multimedia information system. The architecture of CORE is described in detail along with the associated retrieval mechanisms and indexing techniques. Various modules developed for efficient retrieval are presented with some APIs. The efficacy of CORE is demonstrated in the development of two multimedia systems, a computer-aided facial image inference and retrieval (CAFIIR) system and a system for trademark archival and retrieval (STAR), which have been developed at the Institute of Systems Science (ISS). We expect that CORE will be useful for effective prototyping of other such multimedia applications.Mainly supported by National Science & Technology Board of SingaporePartly working in Real World Computing Partnership, Novel Function Institute of Systems Science Laboratory since April 1994.  相似文献   

7.
To achieve smooth real-world interaction between people and computers, we developed a system that displays a three-dimensional computer-graphic human-like image from the waist up (anthropomorphic software robot: hereinafter “robot”) on the display, that interactively sees and hears, and that has fine and detailed control functions such as facial expressions, line of sight, and pointing at targets with its finger. The robot visually searches and identifies persons and objects in real space that it has learned in advance (registered space, which was our office in this case), manages the history information of the places and times it found objects and/or persons, and tells the user, indicating their three-dimensional positions with line of sight and its finger. It interactively learns new objects and persons with line of with their names and owners. By using this function, the robot can engage in simple dialogue (do a task) with the user. Osamu Hasegawa, Ph.D.: He received the B.E. and M.E. degrees from the Science University of Tokyo, in 1988, 1990 respectively. He received Ph.D. degree from the University of Tokyo, in 1993. Currently, he is a senior research scientist at the Electrotechnical Laboratory (ETL), Tsukuba, Japan. His research interests include Computer Vision and Multi-modal Human Interface. Dr. Hasegawa is a member of the AAAI, the Institute of Electronics, Information and Communication Engineers, Japan (IEICE), Information Processing Society of Japan and others. Katsuhiko Sakaue, Ph.D.: He received the B.E., M.E., and Ph.D. degrees all in electronic engineering from the University of Tokyo, in 1976, 1978 and 1981, respectively. In 1981, he joined the Electrotechnical Laboratory, Ministry of International Trade and Industry, and engaged in researches in image processing and computer vision. He received the Encouragement Prize in 1979 from IEICE, and the Paper Award in 1985 from Information Processing Society of Japan. He is a member of IEICE, IEEE, IPSJ, ITE. Satoru Hayamizu, Ph.D.: He is a leader of Interactive Intermodal Integration Lab. at Electrotechnical Laboratory. He received the B.E., M.E., Ph.D. degrees from Tokyo University. Since 1981, he has been working on speech recognition, spoken dialogue, and communication with artifacts. From 1989 to 1990, he was a visiting scholar in Carnegie Mellon University and in 1994 a visiting scientist in LIMSI/CNRS.  相似文献   

8.
《Micro, IEEE》1992,12(4):70-80
The Real World Computing (RWC) program (also called the New Information Processing Technology program), a 10-year program sponsored by Japan's Ministry of International Trade and Industry (MITI), is described. The goal of the program is to lay the technological foundations for the information society that Japan anticipates in the next century. The RWC program replaces the Fifth Generation project. The author presents a summary of the draft prepared by the RWC program's Feasibility Study Committee as presented in Tokyo, March 2-3, 1992, at what was called RWC92, the Second NIPT Workshop. MITI expects future information systems to be based on a flexible integration of massively parallel computing, optical computing, neural computing, and logic programming. The Real World Computing program aims to establish theoretical foundations for these technologies, explore applications, and study how they can be integrated  相似文献   

9.
In this paper, we propose as a new challenge a public opinion channel which can provide a novel communication medium for sharing and exchanging opinions in a community. Rather than simply developing a means of investigating public opinion, we aim at an active medium that can facilitate mutual understanding, discussion, and public opinion formation. First, we elaborate the idea of public opinion channels and identify key issues. Second, we describe our first step towards the goal using the talking virtualized egos metaphor. Finally, we discuss a research agenda towards the goal. Toyoaki Nishida, Dr.Eng.: He is a professor of Department of Information and Communication Engineering, School of Engineering, The University of Tokyo. He received the B.E., the M.E., and the Doctor of Engineering degrees from Kyoto University in 1977, 1979, and 1984 respectively. His research centers on artificial intelligence in general. His current research focuses on community computing and support systems, including knowledge sharing, knowledge media, and agent technology. He has been leading the Breakthrough 21 Nishida Project, sponsored by Ministry of Posts and Telecommunications, Japan, aiming at understanding and assisting networked communities. Since 1997, he is a trustee for JSAI (Japanese Society for Artificial Intelligence), and serves as the program chair of 1999 JSAI Annual Convention. He is an area editor (intelligent systems) of New Generation Computing and an editor of Autonomous Agents and Multiagent Systems. Nobuhiko Fujihara, Ph.D.: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E., the M.E., and the Ph.D. in Human Sciences degrees from Osaka University in 1992, 1994, and 1998 respectively. He has a cognitive psychological background. His current research focuses on: (1) cognitive psychological analysis of human behavior in a networked community, (2) investigation of information comprehension process, (3) assessment and proposition of communication tools in networking society. Shintaro Azechi: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E. and the M.E. of Human Sciences degrees from Osaka University in 1994 and 1996 respectively. He is a Doctoral Candidate of Graduate School of Human Sciences, Osaka University. His current researches focus on (1) human behavior in networking community (2) social infomation process in human mind (3) development of acessment technique for communication tools in networkingsociety. His approach is from social psychological view. Kaoru Sumi, Dr.Eng.: She is a Researcher of Breakthrough 21 Nishida Project. She received her Bachelor of Science at School of Physics, Science University of Tokyo. She received her Master of Systems Management at Graduate School of Systems Management, The university of Tsukuba. She received her Doctor of engineering at Graduate School of Engineering, The University of Tokyo. Her research interests include knowledge-based systems, creativity supporting systems, and their applications for facilitating human collaboration. She is a member of the Information Processing Society of Japan (IPSJ), the Japanese Society for Artificial Intelligence (JSAI). Hiroyuki Yano, Dr.Eng.: He is a senior research official of Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts and Telecommunications. He received the B.E., the M.E., and the Doctor of Engineering degrees from Tohoku University in 1986, 1988, and 1993 respectively. His interests of research include cognitive mechanism of human communications. His current research focuses on discourse structure, human interface, and dialogue systems for human natural dialogues. He is a member of the Japanese Society for Artificial Intelligence, the Association for Natural Language Processing, and the Japanese Cognitive Science Society. Takashi Hirata: He is a doctor course student in Graduate School of Information Scienc at Nara Institute of Science and Technology (NAIST). He received a master of engineering from NAIST in 1998. His research interest is knowledge media and knowledge sharing. He is a member of Information Processing Society of Japan (IPSJ), Japan Association for Artificial Intelligence (JSAI) and The Institute of Systems, Control and Information Engineers (ISCIE).  相似文献   

10.
Real robots should be able to adapt autonomously to various environments in order to go on executing their tasks without breaking down. They achieve this by learning how to abstract only useful information from a huge amount of information in the environment while executing their tasks. This paper proposes a new architecture which performs categorical learning and behavioral learning in parallel with task execution. We call the architectureSituation Transition Network System (STNS). In categorical learning, it makes a flexible state representation and modifies it according to the results of behaviors. Behavioral learning is reinforcement learning on the state representation. Simulation results have shown that this architecture is able to learn efficiently and adapt to unexpected changes of the environment autonomously. Atsushi Ueno, Ph.D.: He is a research associate in the Artificial Intelligence Laboratory at the Graduate School of Information Science at the Nara Institute of Science and Technology (NAIST). He received the B.E., the M.E., and the Ph.D. degrees in aeronautics and astronautics from the University of Tokyo in 1991, 1993, and 1997 respectively. His research interest is robot learning and autonomous systems. He is a member of Japan Association for Artificial Intelligence (JSAI). Hideaki Takeda, Ph.D.: He is an associate professor in the Artificial Intelligence Laboratory at the Graduate School of Information Science at the Nara Institute of Science and Technology (NAIST). He received his Ph.D. in precision machinery engineering from the University of Tokyo in 1991. He has conducted research on a theory of intelligent computer-aided design systems, in particular experimental study and logical formalization of engineering design. He is also interested in multiagent architectures and ontologies for knowledge base systems.  相似文献   

11.
This paper presents and empirically evaluates a generational real-time garbage collection scheme, which is based on combining Baker’s real-time scheme with a simple generational scheme by Andrew W. Appel. Real World Computing Partnership. Khayri A. M. Ali, Ph.D.: He currently works as Dean of the Faculty of Computer Science at October University for Modern Sciences and Arts, Egypt. He received his B. Sc. (1970) in Electronics, his M. Sc. (1977) in Automatic Control, both from Egypt. He received his Ph.D. in Computer Systems from the Royal Institute of Technology, Stockholm, in 1984. His research interests are in developing parallel and distributed logic, functional, object-oriented, and constraints programming systems.  相似文献   

12.
This paper aims at constructing a music composition system that composes music by the interaction between human and a computer. Even users without special musical knowledge can compose 16-bar musical works with one melody part and some backing parts using this system. The interactive Genetic Algorithm is introduced to music composition so that users’ feeling toward music is reflected in the composed music. One chromosome corresponds to 4-bar musical work information. Users participate in music composition by evaluating composed works after GA operators such as crossover, mutation, virus infection are applied to chromosomes based on the evaluation results. From the experimental results, it is found that the users’ evaluation values become high over the progress of generations. That is, the system can compose 16-bar musical works reflecting users’ feeling. Muneyuki Unehara: He received his M.S. in Engineering in 2002 from Institute of Science and Engineering, University of Tsukuba. Currently, he is a Ph.D. candidate of Graduate School of Systems and Information Engineering, University of Tsukuba. His research interests include the construction of intelligent systems by considering soft computing techniques and human interface. Takehisa Onisawa, Ph.D.: He received Dr.Eng. in Systems Science in 1986 from Tokyo Institute of Technology. Currently, he is a Professor in the Graduate School of Systems and Information Engineering, University of Tsukuba. His research interests include applications of soft computing techniques to human centered systems thinking. He is a member of IEEE and IFSA.  相似文献   

13.
14.
Privacy-preserving is a major concern in the application of data mining techniques to datasets containing personal, sensitive, or confidential information. Data distortion is a critical component to preserve privacy in security-related data mining applications, such as in data mining-based terrorist analysis systems. We propose a sparsified Singular Value Decomposition (SVD) method for data distortion. We also put forth a few metrics to measure the difference between the distorted dataset and the original dataset and the degree of the privacy protection. Our experimental results using synthetic and real world datasets show that the sparsified SVD method works well in preserving privacy as well as maintaining utility of the datasets. Shuting Xu received her PhD in Computer Science from the University of Kentucky in 2005. Dr. Xu is presently an Assistant Professor in the Department of Computer Information Systems at the Virginia State University. Her research interests include data mining and information retrieval, database systems, parallel, and distributed computing. Jun Zhang received a PhD from The George Washington University in 1997. He is an Associate Professor of Computer Science and Director of the Laboratory for High Performance Scientific Computing & Computer Simulation and Laboratory for Computational Medical Imaging & Data Analysis at the University of Kentucky. His research interests include computational neuroinformatics, data miningand information retrieval, large scale parallel and scientific computing, numerical simulation, iterative and preconditioning techniques for large scale matrix computation. Dr. Zhang is associate editor and on the editorial boards of four international journals in computer simulation andcomputational mathematics, and is on the program committees of a few international conferences. His research work has been funded by the U.S. National Science Foundation and the Department of Energy. He is recipient of the U.S. National Science Foundation CAREER Award and several other awards. Dianwei Han received an M.E. degree from Beijing Institute of Technology, Beijing, China, in 1995. From 1995to 1998, he worked in a Hitachi company(BHH) in Beijing, China. He received an MS degree from Lamar University, USA, in 2003. He is currently a PhD student in the Department of Computer Science, University of Kentucky, USA. His research interests include data mining and information retrieval, computational medical imaging analysis, and artificial intelligence. Jie Wang received the masters degree in Industrial Automation from Beijing University of Chemical Technology in 1996. She is currently a PhD student and a member of the Laboratory for High Performance Computing and Computer Simulation in the Department of Computer Science at the University of Kentucky, USA. Her research interests include data mining and knowledge discovery, information filtering and retrieval, inter-organizational collaboration mechanism, and intelligent e-Technology.  相似文献   

15.
In this paper, we propose an approach to the construction of an intelligent system that handles various domain information provided on the Internet. The intelligent system adopts statistical decision-making as its reasoning framework and automatically constructs probabilistic knowledge, required for its decision-making, from Web-pages. This construction of probabilistic knowledge is carried out using aprobability interpretation idea that transforms statements in Web-pages into constraints on the subjective probabilities of a person who describes the statements. In this paper, we particularly focus on describing the basic idea of our approach and on discussing difficulties in our approach, including our perspective. Kazunori Fujimoto: He received bachelor’s degree from Department of Electrical Engineering, Doshisha University, Japan, in 1989, and master’s degree from Division of Applied Systems Science, Kyoto University, Japan, in 1992. From there, he joined NTT Electrical Communications Laboratories, Tokyo, Japan, and has been engaged in research on Artificial Intelligence. He is currently interested in probabilistic reasoning, knowledge acquisition, and especially in quantitative approaches to research in human cognition and behavior. Mr. Fujimoto is a member of Decision Analysis Society, The Behaviormetric Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan, and Japanese Society for Fuzzy Theory and Systems. Kazumitsu Matsuzawa: He received B.S. and M.S. degrees in electronic engineering from Tokyo Institute of Technology, Tokyo, Japan, in 1975 and 1977. From there, he joined NTT Electrical Communications Laboratories, Tokyo, Japan, and has been engaged in research on computer architecture and the design of LSI. He is currently concerned with AI technology. Mr. Matsuzawa is a member of The Institute of Electronics, Information and Communication Engineers, Information Processing Society of Japan, Japanese Society for Artificial Intelligence, and Japanese Society for Fuzzy Theory and Systems.  相似文献   

16.
AgentTeamwork is a grid-computing middleware system that dispatches a collection of mobile agents to coordinate a user job over remote computing nodes in a decentralized manner. Its utmost focus is to maintain high availability and dynamic balancing of distributed computing resources to a parallel-computing job. For this purpose, a mobile agent is assigned to each process engaged in the same job, monitors its execution at a different machine, takes its periodical execution snapshot, moves it to a lighter-loaded machine, and resumes it from the latest snapshot upon an accidental crash. The system also restores broken inter-process communication involved in the same job using its error-recoverable socket and mpiJava libraries in collaboration among mobile agents. We have implemented the first version of our middleware including a mobile agent execution platform, error-recoverable socket and mpiJava API libraries, a job wrapper program, and several types of mobile agents such as commander, resource, sentinel, and bookkeeper agents, each orchestrating, allocating resources to, monitoring and maintaining snapshots of a user process respectively. This paper presents AgentTeamwork’s execution model, its implementation techniques, and our performance evaluation using the Java Grande benchmark test programs. Munehiro Fukuda received a B.S. from the College of Information Sciences and an M.S. from the Master’s Program in Science and Enginnering at the University of Tsukuba in 1986 and 1988. He received his M.S. and Ph.D. in Information and Computer Science at the University of California at Irvine in 1995 and 1997, respectively. He worked at IBM Tokyo Research Laboratory from 1988 to 1993 and taught at the University of Tsukuba from 1998 to 2001. Since 2001, he has been an assistant professor at Computing & Software Systems, the University of Washington, Bothell. His research interests include mobile agents, multi-threading, cluster computing, grid computing and distributed simulations. Koichi Kashiwagi received a Bachelor of Science degree from the Faculty of Science, Ehime University in 2000 and a Master of Engineering degree from the Department of Compter Science, Ehime University in 2002. In 2004 he became a research assistant in Department of Compter Science, Ehime University. His research interests include distributed computing, job scheduling, and grid computing. Shin-ya Kobayashi received the B.E. degree, M.E. degree, and Dr.E. degree in Communication Engineering from Osaka University in 1985, 1988, and 1991 respectively. From 1991 to 1999, he was on the faculty of Engineering at Kanazawa University, Japan. From 1999 to 2004, He was an Associate Professor in the Department of Computer Science, Ehime University. He is a Professor at Graduate School of Science and Engineering, Ehime University. His research interests include distributed processing, and parallel processing. He is a member of the Information Processing Society of Japan, the Institute of Electrical Engineers of Japan, IEEE, and ACM.  相似文献   

17.
Recently there has been great interest in the design and study of evolvable systems based on Artificial Life principles in order to monitor and control the behavior of physically embedded systems such as mobile robots, plants and intelligent home devices. At the same time new integrated circuits calledsoftware-reconfigurable devices have been introduced which are able to adapt their hardware almost continuously to changes in the input data or processing. When the configuration phase and the execution phase are concurrent, the software-reconfigurable device is calledevolvable hardware (EHW). This paper examines an evolutionary navigation system for a mobile robot using a Boolean function approach implemented on gate-level evolvable hardware (EHW). The task of the mobile robot is to reach a goal represented by a colored ball while avoiding obstacles during its motion. We show that the Boolean function approach using dedicated evolution rules is sufficient to build the desired behavior and its hardware implementation using EHW allows to decrease the learning time for on-line training. We demonstrate the effectiveness of the generalization ability of the Boolean function approach using EHW due to its representation and evolution mechanism. The results show that the evolvable hardware configuration learned off-line in a simple environment creates a robust robot behavior which is able to perform the desired behaviors in more complex environments and which is insensitive to the gap between the real and simulated world. Didier Keymeulen, Ph.D.: He currently works as a senior research engineer at the Computer Science Division of Electrotechnical Laboratory, AIST, MITI, Japan. His research interests are in the design of adaptive physically embedded systems using biologically inspired complex dynamical systems. He studied electrical and computer science engineering at the Universite Libre de Bruxelles in 1987. He obtained his M. Sc. and PH. D. in Computer Science from the Artificial Intelligence Laboratory of the Vrije Universiteit Brussel, directed by Dr. Luc Steels, respectively in 1991 and 1994. He was the Belgium laureate of the Japanese JSPS Postdoctoral Fellowship for Foreign Researchers in 1995. Masaya Iwata, Ph.D.: He currently works as a researcher at the Computer Science Division of Electrotechnical Laboratory, AIST, MITI, Japan. His research interests are in developing adaptive hardware devices using genetic algorithms, and in their applications to pattern recognition and image compression. He received his B. E. in 1988, his M. E. in 1990, and his Ph. D. in 1993 in applied physics from the Osaka University. He was a postdoctoral fellow in optical computing at ONERA-CERT, Toulouse, France in 1993. Kenji Konaka: He is currently working as a software research engineer at the Humanoid Interaction Laboratory of the Intelligent Systems Division of Electrotechnical Laboratory, AIST, MITI, Japan. His current research interest is on real-time vision-based mobile robots working in cooperative mode. He has developped a highly interactive distributed real-time software and hardware platform for controlling a group of robots. Yasuo Kuniyoshi, Ph.D.: He is currently a senior research scientist and head of the Humanoid Interaction Laboratory at the Intelligent Systems Division of Electrotechnical Laboratory, AIST, MITI, Japan. His current research interest is on emergence of stable structures out of complex sensory-motor interactions by a humanoid robot. He received IJCAI93 Outstanding Paper A ward and several other awards in the field of intelligent robotics. He received the B. Eng. in applied physics in 1985, M. Eng. and Ph. D. in information engineering in 1988 and 1991 respectively, all from the University of Tokyo. Tetsuya Higuchi, Ph.D.: He heads the Evolvable Systems Laboratory in Electrotechnical Laboratory, AIST, MITI, Japan. He received B. E., M. E., Ph. D. degrees all in electrical engineering from Keio University in 1978, 1980, and 1984, respectively. His current interests include envolvable hardware systems, parallel processing architecture in artificial intelligence, and adaptive systems. He is also in charge of the adaptive devices group in the MITI national project, Real World Computing Project.  相似文献   

18.
“Drivers’ Information Assistance System (DIA system)” is an ITS (Intelligent Transport Systems) application framework that provides agent-based information assistance to drivers through car navigation systems or on-board PCs. DIA system enables flexible information retrieval over the Internet using intelligent mobile agent, and incorporates a high-speed event delivery facility that makes real-time information service possible. The goal of the system is to provide up to the minute information and services related to driver needs, such as parking lot vacancy information. Crucial to making this a practical operation is the agent-based ability to access the network while the vehicle is in motion. Masanori Hattori: He is a research engineer in the Computer & Network Systems Laboratory, Corporate Research & Development Center, Toshiba Corporation. His research interests are network computing, human interface, and agent technologies especially in mobile agents, intelligent agents, and physical agents. He received the B.E. and M.E. from the Kyushu University. Naoki Kase: He received the M.S. in computer science from the Keio University, Japan. His research interests are mobile agent and its applications. He has developed an intelligent mobile agent system and its applications on ITS (Intelligent Transport Systems) field. Akihiko Ohsuga, Dr. Eng.: He is a senior research scientist at the Computer & Network Systems Laboratory in Toshiba Corporation. Dr. Ohsuga received a B.S. degree in mathematics from Sophia University in 1981 and a Dr. Eng. degree in electrical engineering from Waseda University in 1995. He joined Toshiba Corporation in 1981, worked with the ICOT (institute for New Generation Computer Technology) involved in the Fifth Generation Computer System project from 1985 to 1989. His research interests include agent technologies, formal specification & verification, and automated theorem proving. Shinichi Honiden, Dr.Eng.: He is a chief specialist of Government Division, Toshiba Corporation. He received the B.S., M.S., and Dr. Eng. degrees in electrical engineering from Waseda University, Tokyo, Japan, in 1976, 1978, and 1986, respectively. Since 1978, he has been with Toshiba Corporation. His research interests include software engineering and artificial intelligence. In these fields, he is the author or coauthor of ten textbooks and has published over 80 technical papers.  相似文献   

19.
Chance discovery is concerned with events or situations that affect human decision making; such events or situations are viewed as opportunities or risks. Perspectives are mental representations that describe partial knowledge of a task domain (cognitive perspective) as well as knowledge about other participants (social perspectives). Based on verbal protocols and a computational model of these protocols, it is argued that perspective taking is a suitable strategy to achieve chance discovery. Therefore the cognitive mechanisms underlying this strategy have been investigated and the results implicate metacognition as necessary requirement to achieve chance discovery. Ruediger Oehlmann, Ph.D.: He is a senior lecturer in the Cognitive Science Laboratory, School of Computing and Information Systems, Kingston University, London. He received his degrees in Mathematics, Computer Science and Psychology. His doctoral thesis describes a model of discovery learning, which he has extensively tested using psychological experiments as well as computer programs. His current research interests include perspective taking, creativity, chance discovery and collaborative work in design domains. He is a member of the British Computer Society and the Cognitive Science Society.  相似文献   

20.
A Web information visualization method based on the document set-wise processing is proposed to find the topic stream from a sequence of document sets. Although the hugeness as well as its dynamic nature of the Web is burden for the users, it will also bring them a chance for business and research if they can notice the trends or movement of the real world from the Web. A sequence of document sets found on the Web, such as online news article sets is focused on in this paper. The proposed method employs the immune network model, in which the property of memory cell is used to find the topical relation among document sets. After several types of memory cell models are proposed and evaluated, the experimental results show that the proposed method with memory cell can find more topic streams than that without memory cell. Yasufumi Takama, D.Eng.: He received his B.S., M.S. and Dr.Eng. degrees from the University of Tokyo in 1994, 1996, and 1999, respectively. From 1999 to 2002 he was with Tokyo Institute of Technology, Japan. Since 2002, he has been Associate Professor of Department of Electronic Systems and Engineering, Tokyo Metropolitan Institute of Technology, Tokyo, Japan. He has also been participating in JST (Japan Science and Technology Corporation) since October 2000. His current research interests include artificial intelligence, Web information retrieval and visualization systems, and artificial immune systems. He is a member of JSAI (Japanese Society of Artificial Intelligence), IPS J (Information Processing Society of Japan), and SOFT (Japan Society for Fuzzy Theory and Systems). Kaoru Hirota, D.Eng.: He received his B.E., M.E. and Dr.Eng. degrees in electronics from Tokyo Institute of Technology, Tokyo, Japan, in 1974, 1976, and 1979, respectively. From 1979 to 1982 and from 1982 to 1995 he was with the Sagami Institute of Technology and Hosei University, respectively. Since 1995, he has been with the Interdisciplinary Graduate School of Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. He is now a department head professor of Department of Computational Intelligence and Systems Science. Dr.Hirota is a member of IFSA (International Fuzzy Systems Association (Vice President 1991–1993), Treasurer 1997–2001), IEEE (Associate Editors of IEEE Transactions on Fuzzy Systems (1993–1995) and IEEE Transactions on Industrial Electronics (1996–2000)) and SOFT (Japan Society for Fuzzy Theory and Systems (Vice President 1995–1997, President 2001–2003)), and he is an editor in chief of Int. J. of Advanced Computational Intelligence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号