首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg- CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.
  相似文献   

2.
The results of the modification of AG-OV-1 activated carbon under various conditions (by atmospheric oxygen at elevated temperatures and by hydrogen peroxide or ozone) are given. The effect of the used modifier on changes in the porosity, surface state, and adsorption capacity of activated carbon is evaluated.  相似文献   

3.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium oxide-based catalysts. The investigation was focused on the role of V2O5, and phase cooperation between V2O5 and Bi2O3 in this reaction. The conversion of H2S continued to decrease since V2O5 was gradually reduced by treatment with H2S. The activity of V2O5 was recovered by contact with oxygen. A strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V2O5 and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO) and two bed reaction tests were performed to explain this synergistic effect by the reoxidation ability of Bi2O3. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

4.
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.  相似文献   

5.
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.  相似文献   

6.
Cerium oxide is one of the most important rare earth elements that is introduced into glass compositions due to its great effects on the optical properties. CeO2 was introduced in Hench’s patented SiO2-Na2O-CaO-P2O5 glasses with different concentrations in order to study its effect on the optical behavior of this glass including optical band gap, transmittance, reflectance and refractive index and to give a complete view for the optical properties on cerium oxide-doped silicate glasses.  相似文献   

7.
Synthetic spinels of the system MgO-Cr2O3-Al2O3-Fe2O3 are considered and the desirability of organizing their production for the refractory industry is demonstrated. Translated from Novye Ogneupory, No. 6, pp. 32–35, June 2008.  相似文献   

8.
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP),i.e., UV, UV/H2O, and UV/H2O,/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.  相似文献   

9.
Structure and crystalline behavior of the ternary system ZnO-B2O3-P2O5 glasses were investigated by means of X-ray diffraction (XRD) and infrared Raman spectra. The research showed that number of the planar [BO3] units increases with the increase of B2O3 content. When the B2O3 content is above ≥10 mol %, the relative content of planar [BO3] units increases rapidly and causes weakening of the glass structure and decrease in the chemical stability. In the crystallized glasses the predominant crystal phase Zn2P2O7 decreases with the increase of B2O3 content, while the crystal phase BPO4 increases with it, which cause the declining of chemical stability and the decrease of thermal coefficients of expansion.  相似文献   

10.
Two types of CeO2-modified Ni/Al2O3 catalysts were prepared by a consecutive impregnation method with different sequences in the impregnation of Ni and CeO2, and their performance in autothermal reforming (ATR) of isooctane was investigated. Catalysts prepared by adding CeO2 prior to the addition of Ni, Ni/CeO2-Al2O3, produced larger amounts of hydrogen than those obtained using catalysts prepared by adding the two components in an opposite sequence, Ni-CeO2/Al2O3. The results of H2 chemisorption and temperature-programmed reduction revealed that added CeO2 increased the dispersion of the Ni species on Al2O3 and suppressed the formation of NiAl2O4 in the catalyst such that large amounts of Ni species were present as NiO, the active species for the ATR. The elemental and thermogravimetric analyses of deactivated catalysts indicated that Ni/CeO2-Al2O3, which showed a longer lifetime than Ni-CeO2/Al2O3, contained lesser amounts and different types of coke on the surface.  相似文献   

11.
12.
Graphite electrodes chemically modified with Prussian Blue (G/PB) were obtained by spreading, on the electrode surface, appropriate volumes of 100 mM K3[Fe(CN)6] and 100 mM FeCl3 solutions, both containing 10 mM HCl. In order to improve the electrochemical response stability, the potential of G/PB electrodes was cycled (in the domain where PB exhibits electrochemical activity) in 0.1 M KCl solution (G/PB-K), as well as in 2 mM RhCl3 solution, containing 0.05 M KCl (G/PB-Rh). Compared with G/PB-K, the G/PB-Rh modified electrodes showed: (i) higher relative stability of the PB electrochemical response; (ii) better analytical parameters for H2O2 amperometric detection; (iii) slightly lower rate constant corresponding to the second order electrocatalytic reaction for H2O2 amperometric detection; (iv) an electrocatalytic activity not affected by the H2O2 concentration.  相似文献   

13.
14.
This paper presents the measurement and simulation data on the thermal and chemical structure of an atmospheric-pressure premixed H2/O2/N2 flame doped with iron pentacarbonyl Fe(CO)5. Soft ionization molecular beam mass spectrometry was used to measure concentration profiles of the combustion products of iron pentacarbonyl: Fe, FeO2, FeOH, and Fe(OH)2. A comparison of experimental and simulated concentration profiles showed that they are in satisfactory agreement for FeO2 and Fe(OH)2 and differ significantly for Fe and FeOH. Thus, the previously proposed kinetic model for the oxidation of iron pentacarbonyl was tested and it was shown that the mechanism needs further elaboration.  相似文献   

15.
The results of studying the thermal behavior of natural boron albite–reedmergnerite NaBSi3O8 and aqueous boricilicate–searlesite NaBSi2O5(OH)2 obtained by the method of hydrothermal synthesis are presented. In the investigated temperature range, reedmergnerite (30–780°C) does not undergo phase transformations. Thermal expansion is sharply anisotropic, which is a characteristic feature of the expansion of feldspars. Aqueous borosilicate searlesite (25–750°C) is amorphized above 400°C as a result of dehydration and cristobalite crystallizes from the amorphous phase. The expansion of searlesite is relatively isotropic.  相似文献   

16.
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.  相似文献   

17.
18.
The phase formation is investigated and the phase diagram of the Ho2O3-SrAl2O4 system is constructed. A ternary compound, namely, Ho2SrAl2O7, is revealed. It is established that this compound undergoes incongruent melting.  相似文献   

19.
20.
The phase equilibria are investigated and the phase diagram is constructed for the Gd2O3-SrAl2O4 pseudobinary join of the Gd2O3-SrO-Al2O3 ternary oxide system. One ternary compound, namely, Gd2SrAl2O7, is revealed in the Gd2O3-SrAl2O4 join. It is found that this compound undergoes congruent melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号