首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了一个工作于快照模式的CMOS焦平面读出电路的低功耗新结构-OESCA(Odd-Even SnapshotCharge Amplifier)结构该结构像素电路非常简单,仅用三个NMOS管;采用两个低功耗设计的电荷放大器做列读出电路,分别用于奇偶行的读出,不但可有效消除列线寄生电容的影响,而且列读出电路的功耗可降低1 5%,因此OESCA新结构特别适于要求低功耗设计的大规模、小像素阵列焦平面读出电路采用OESCA结构和1.2μm双硅双铝标准CMOS工艺设计了一个64×64规模焦平面读出电路实验芯片,其像素尺寸为50μm×50μm,读出电路的电荷处理能力达10.37pC.详细介绍了该读出电路的体系结构、像素电路、探测器模型和工作时序,并给出了精确的SPICE仿真结果和试验芯片的测试结果.  相似文献   

2.
一个128×128CMOS快照模式焦平面读出电路设计   总被引:3,自引:0,他引:3  
本文介绍了一个工作于快照模式的CMOS焦平面读出电路新结构——DCA(Direct-injection Charge Amplifier)结构.该结构像素电路仅用4个MOS管,采用特殊的版图设计并用PMOS管做复位管,既可保证像素内存储电容足够大,又可避免复位电压的阈值损失,从而提高了读出电路的电荷处理能力.由于像素电路非常简单,且该结构能有效消除列线寄生电容Cbus的影响,因此该结构非常适用于小像素、大规模的焦平面读出电路.采用DCA结构和1.2μm双硅双铝(DPDM-Double-Poly Double-Metal)标准CMOS工艺设计了一个128×128规模焦平面读出电路试验芯片,其像素尺寸为50×50μm2,电荷处理能力达11.2pC.本文详细介绍了该读出电路的体系结构、像素电路、探测器模型和工作时序,并给出了精确的HSPICE仿真结果和试验芯片测试结果.  相似文献   

3.
数字化红外焦平面探测技术作为第三代红外焦平面技术成为近年来被研究的热点.本文提出了一种将像素级数字化技术与TDI技术相结合的红外焦平面读出电路,使得电路实现大动态范围的同时满足低功耗设计.文中在0.18μm CMOS工艺模型下,对电路进行设计仿真,该读出电路电荷处理能力可达到5.04 Ge-,动态范围最高达到101.5...  相似文献   

4.
本文提出了一种64×4扫描型红外焦平面读出电路。电路采用0.5μm标准CMOS工艺。工作电压为5V。本设计在列读出级采用了降低寄生电容影响的设计,以降低电路输出相对无寄生电容设计输出值的偏差,提高各通道的一致性。在对具有4级TDI、微扫描步长为探测器中心间距1/3的读出电路列暂存级进行的仿真中,相对于改进前的普通电路结构,本文提出的新型电路结构与设计理想值之间的偏差降为原来的10%。  相似文献   

5.
徐斌  袁永刚  李向阳 《半导体光电》2014,35(5):768-772,806
为提高紫外焦平面组件成像质量,提出了可用于紫外焦平面的像素级数字化读出电路结构。针对紫外信号微弱及焦平面探测器像素面积小的特点,设计了基于电容反馈跨阻放大器(Capacitive Trans-Impedance Amplifier,CTIA)结构、模数转换器和锁存器的紫外焦平面像素级模数转换读出电路,并给出了实现像素内模数转换的工作原理。详细讨论了像素内模数转换的实现方法,各模块的设计要求及其具体实现,并基于0.35μm DP4M CMOS工艺设计制造了面阵规模128×128、像素单元面积50μm×50μm的读出电路芯片。电路性能测试与成像实验表明:电路的精度达到1mV以下,有效位数达到11位,实现了紫外焦平面读出电路的低噪声数字化输出。  相似文献   

6.
为了实现红外焦平面数字化输出,设计了一种带片上模数转换的焦平面读出电路,包括一个8×1的读出电路单元阵列和一个基于逐次逼近算法的10位模数转换器。单元读出电路采用了电容反馈负阻抗放大器结构作为输入级,输出的信号经采样保持后通过多路传输送到模数转换器。设计的逐次逼近型的模数转换器中的比较器采用的是两级开环结构,数模转换器采用的是高位电荷缩放低位电压缩放型的结构。在Cadence全定制设计平台下,采用0.6μm双多晶硅、双金属层的CMOS工艺模型对电路进行了仿真和版图设计。整个读出电路采用5V电压供电,20kHz的采样输出时仿真平均功耗约为5mW。  相似文献   

7.
为了实现红外焦平面数字化输出,设计了一种带片上模数转换的焦平面读出电路,包括一个8×1的读出电路单元阵列和一个基于逐次逼近算法的10位模数转换器。单元读出电路采用了电容反馈负阻抗放大器结构作为输入级,输出的信号经采样保持后通过多路传输送到模数转换器。设计的逐次逼近型的模数转换器中的比较器采用的是两级开环结构,数模转换器采用的是高位电荷缩放低位电压缩放型的结构。在Cadence全定制设计平台下,采用0.6μm双多晶硅、双金属层的CMOS工艺模型对电路进行了仿真和版图设计。整个读出电路采用5V电压供电,20kHz的采样输出时仿真平均功耗约为5mW。  相似文献   

8.
刘震宇  赵建忠 《激光与红外》2008,38(10):1042-1045
针对一款大面阵(640×512元)快照模式制冷型红外焦平面用的读出电路进行了初步分析验证.该读出电路采用改进DI结构,先积分后读出的积分控制模式,像素尺寸为25μm×25μm,芯片已在0.5μm双硅双铝(DPDM)标准CMOS工艺下试制.首先对该电路结构及工作原理进行分析,并对输入级等电路的传输特性进行仿真验证,最后给出探测器阵列与读出电路芯片互连后的测试结果.结果表明该读出电路适用于小像素、大规模的红外焦平面阵列.  相似文献   

9.
本文提出了一种64×4扫描型红外焦平面读出电路。电路采用0.5μm标准CMOS工艺。工作电压为5V。本设计在列读出级采用了降低寄生电容影响的设计,以降低电路输出相对无寄生电容设计输出值的偏差,提高各通道的一致性。在对具有4级TDI、微扫描步长为探测器中心间距1/3的读出电路列暂存级进行的仿真中,相对于改进前的普通电路结构,本文提出的新型电路结构与设计理想值之间的偏差降为原来的10%。  相似文献   

10.
为了实现红外焦平面数字化输出,设计了一种带片上模数转换的焦平面读出电路,包括一个8×1的读出电路单元阵列和一个基于逐次逼近算法的10位模数转换器.单元读出电路采用了电容反馈负阻抗放大器结构作为输入级,输出的信号经采样保持后通过多路传输送到模数转换器.设计的逐次逼近型的模数转换器中的比较器采用的是两级开环结构,数模转换器采用的是高位电荷缩放低位电压缩放型的结构.在Cadence全定制设计平台下,采用0.6μm双多晶硅、双金属层的CMOS工艺模型对电路进行了仿真和版图设计.整个读出电路采用5V电压供电,20kHz的采样输出时仿真平均功耗约为5mW.  相似文献   

11.
基于自偏置电流镜的CMOS红外焦平面读出电路   总被引:1,自引:0,他引:1  
针对高精度红外焦平面阵列应用设计了一种具有高注入效率、大动态范围、稳定的探测器偏压、小面积和低功耗的自偏置电流镜注入CMOS读出电路.所设计的电路结构包括一种由自偏置的宽摆幅PMOS共源共栅电流镜和NMOS电流镜构成的反馈结构读出单元电路和相关双采样电路.对所设计电路采用Chartered 0.35 μm CMOS工艺进行了流片.测试结果显示:电路线性度达到了99%,探测器两端偏压小于1mV.电路输入阻抗近似为0,单元电路面积为10μm×15μm,功耗小于0.4μW.电量存储能力3108电子.测试结果表明:电路功能和性能都达到了设计要求.  相似文献   

12.
设计了一款中、长波双色应用的数字化红外焦平面读出电路。由于双色红外焦平面器件在注入电流及动态输出阻抗上存在着数量级的差异,同时双波段均要求高灵敏度,因此读出电路需要在有限像元面积内实现双输入级的结构设计和大动态范围。电路采用基于直接注入型输入级的脉冲频率调制结构,设计电荷复位单元代替传统电压复位结构,可降低可探测的电荷分辨率,并改善由复位遗失电荷带来的非线性影响,同时电路设计了20bit混合结构的计数器,满足电路大电荷容量和低功耗的要求。仿真结果表明,实现的最小电荷分辨率为692e-,对应电荷容量为7.2×108e-,双波段探测线性度均高于99.8%,在中、长波典型应用情况下功耗分别为3.03,6.66μW。  相似文献   

13.
文中介绍了一种新型的128×128红外读出电路中的低功耗设计,包括像素级和列读出级两部分。在像素级设计中,提出了一种新型四像素共用反馈放大器( Quad-Share Buffered Injection, QSBDI)的结构:每个像素的平均功耗为500nW,放大器引入的功耗降低了30%,同时使像素FPN只来源于局部失配。列读出级采用新型主从两级放大列读出结构,其中主放大器完成电荷到电压的转换,从放大器驱动输出总线来满足一定的读出速度。通过SPICE仿真发现,与传统列电荷放大器结构相比,新型结构可节省60%的功耗。  相似文献   

14.
介绍了一种面向384×288 CMOS面阵性红外读出电路的低功耗设计.针对探测器的特点(输出阻抗约100kΩ,积分电流约100nA),新提出并实现了一种四像素共用BDI的QSBDI(Quad-share BDI)像素结构.在QSBDI结构中,4个相邻的像素共用一个反馈放大器,从而实现了高注入效率、稳定的偏置、较好的FPN特性和低功耗.另外该384×288读出电路还支持积分然后读出、积分同时读出功能,还有两个可选择的增益以及4种窗口读出模式.128×128的测试读出电路已完成设计、加工和测试.电路使用CSMC0.5μm DPTM工艺流片,测试结果表明在每个子阵列输出的峰峰差异仅为10mV.在4MHz的工作频率下,像素级引入的功耗仅为1mW,芯片的整体功耗也只有37mW,实现了低功耗设计.  相似文献   

15.
为了适应第三代红外焦平面高密度、微型化发展方向,设计了一款大面阵小像元低功耗640×512-5μm InGaAs短波红外焦平面读出电路。重点研究了3T像素单元简易结构的性能,分析其对芯片暗电流、焦平面噪声的影响,实现了卷帘曝光工作方式、列级缓冲器动态工作以及四通道输出功能。利用可编程增益放大器,实现增益可调以及噪声抑制功能。基于0.18μm 3.3V标准CMOS工艺,在输入时钟频率为5MHz条件下,对小像素单元进行性能分析,阵列窗口进行四通道输出以及线性度仿真。结果表明,电容反馈跨阻放大器(CTIA)输入级偏压变化约30mV,工作帧频为54Hz,输出摆幅为1.7V,最大功耗小于150mW,线性度为99.987%。  相似文献   

16.
谢晶  李晓娟  张燕  李向阳 《红外与激光工程》2020,49(5):20190491-20190491-7
提出了一种新型的超低功耗读出电路用于18 μm中心距1 024×1 024面阵规模的AlGaN紫外焦平面。为了实现低功耗设计紫外焦平面读出电路,采用了三种设计方法,包括:电容反馈跨阻放大器CTIA结构采用工作在亚阈值区的单端输入运算放大器,列像素源随缓冲器和电平移位电路共用同一个电流源负载以及列级缓冲器的分时尾电流源设计。由于像素单元内CTIA采用了单端输入运算放大器,在3.3 V供电电压下,每个像素单元最小工作电流仅8.5 nA。该读出电路设计了可调偏置电流电路使读出电路能得到更好的性能并基于SMIC 0.18 μm 1P6M混合信号工艺平台进行了设计制造。测试结果表明:由于采用了上述设计方法,整个芯片的功耗在2 MHz时钟8路输出模式下仅67.3 mW。  相似文献   

17.
介绍了一种面向384×288 CMOS面阵性红外读出电路的低功耗设计.针对探测器的特点(输出阻抗约100kΩ,积分电流约100nA),新提出并实现了一种四像素共用BDI的QSBDI(Quad-share BDI)像素结构.在QSBDI结构中,4个相邻的像素共用一个反馈放大器,从而实现了高注入效率、稳定的偏置、较好的FPN特性和低功耗.另外该384×288读出电路还支持积分然后读出、积分同时读出功能,还有两个可选择的增益以及4种窗口读出模式.128×128的测试读出电路已完成设计、加工和测试.电路使用CSMC0.5μm DPTM工艺流片,测试结果表明在每个子阵列输出的峰峰差异仅为10mV.在4MHz的工作频率下,像素级引入的功耗仅为1mW,芯片的整体功耗也只有37mW,实现了低功耗设计.  相似文献   

18.
一种新型低功耗准动态移位寄存器的模拟   总被引:4,自引:0,他引:4  
提出一种低功耗准动态移位寄存器电路 ,这种电路静态功耗几乎为 0 ,仅仅存在动态功耗 ;是一种无比电路 ,所有的开关和反相器晶体管按最小尺寸进行设计 ,电路简单 ,面积小 ;该种电路不存在电荷的再分配 ,漏电流损失的电荷可从电源补充。采用 1 .2μm的 CMOS工艺 ,用 PSPICE8.0对该电路进行仿真验证。这种低功耗准动态移位寄存器电路已成功用作 CMOS图像传感器的读出扫描电路。  相似文献   

19.
对基于测辐射热计型热敏电阻的非制冷红外焦平面阵列( IRFPA) ,在读出电路(RO2 IC)中采用积分放大技术能有效提高探测器的信噪比。给出了160 ×128的RO IC设计方案,重点介绍了该方案中的偏置结构及积分放大器设计。基于上华半导体0. 6μm CMOS工艺仿真结果表明,该方案能很好地适应大阵列(如160 ×128和320 ×240)的CMOS读出电路。  相似文献   

20.
提出一种像素级源跟随管共享、双列线信号传输的红外焦平面读出电路新结构。像素的电压信号通过两条列线传递到列级,消除了列线寄生电阻带来的非均匀性和非线性。同一列的相邻四行像素共享源跟随管,增大了源跟随管的尺寸和面积,从而降低了热噪声、闪烁噪声以及工艺偏差带来的非均匀性。采用该结构并基于0.35μm 2P3M CMOS工艺设计和制造了一款640×512规格读出电路,像素中心距为15μm。测试结果表明:功耗仅30 mW,动态范围81 dB,非线性度0.11%,非均匀性小于1%。与中波红外探测器阵列互连后进行了组件测试和成像实验,组件非均匀性小于5%,NETD为18 mK,获得了高质量红外图像。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号