共查询到20条相似文献,搜索用时 11 毫秒
1.
Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes 总被引:2,自引:0,他引:2
This paper presents a comprehensive exergy analysis of three circuits and whole system of a ground-source heat pump (GSHP) for both building heating and cooling modes. The purpose is to search out the key potential energy saving components. The analytical formulae of exergy loss, exergy efficiency, exergy loss ratio, exergy loss coefficient and thermodynamic perfect degree are derived, respectively. The results show that these exergy indexes should be used integratively, and in the whole system the location of maximum exergy loss ratio is the compressor, while the location of minimum exergy efficiency and thermodynamic perfect degree is the ground heat exchanger, so that the compressor and the ground heat exchanger should be primarily improved. The results also indicate that the exergy loss of a GSHP system for building heating mode is bigger than that of cooling mode, and the exergy efficiency of a whole GSHP system is obviously lower than those of its components for both building heating and cooling modes. Therefore, a comprehensive exergy analysis of a GSHP should be paid more attention to. The results may provide guidelines for the design and optimization of GSHP systems. 相似文献
2.
Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications 总被引:1,自引:0,他引:1
A heat pump system is the ideal way to extend the heat supply of existing oil or gas fired heating system. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossils fuels simultaneously reduces. In order to investigate the performance of the solar-ground source heat pump system in the province of Erzurum having cold climate, an experimental set-up was constructed. The experimental apparatus consisted of solar collectors, a ground heat exchanger (GHE), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May of 2008-2009. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP) and the system performance (COPS). The coefficient of performance of the heat pump and system were found to be in the range of 3.0-3.4 and 2.7-3.0, respectively. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey. 相似文献
3.
Novel methods are sought to provide greater efficiency of the installation of ground heat exchangers for GSHPs (ground source heat pumps) in domestic buildings. An economically viable option is to utilise concrete foundation piles as ground heat exchangers. The objective of this study is to investigate the operation of utilising a piled foundation structure as a ground heat exchanger. A test plot of 72 m2 (ground floor area) was produced with 21 × 10 m deep concrete piles, with a single U tube pipe in each. Ground heat was extracted by a heat pump with the heat loading being varied in line with the date and the average air temperature. Over the 2007/2008 heating season this study had investigated the temperature changes in the foundation piles and the surrounding ground in addition to the heat pump operational performance. The temperature changes observed in the region of the test plot were compared with variations naturally experienced in the ground due to the seasonal climatic influence. The SPF (seasonal performance factor) of the heat pump was 3.62 and the ground temperature at a distance of 5 m from the test plot was seen to be undisturbed by the heat extraction and followed the predicted seasonal variation. 相似文献
4.
The HVAC systems utilizing renewable energy sources are one of the main contributors towards the fossil fuel dependency reduction. Among these, the ground source heat pump systems, especially those based on vertical ground heat exchanger, are very attractive, due to their high efficiency. 相似文献
5.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system. 相似文献
6.
A thermodynamic analysis of a hybrid geothermal heat pump system is carried out. Mass, energy, and exergy balances are applied to the system, which has a cooling tower as a heat rejection unit, and system performance is evaluated in terms of coefficient of performance and exergy efficiency. The heating coefficient of performance for the overall system is found to be 5.34, while the corresponding exergy efficiency is 63.4%. The effect of ambient temperature on the exergy destruction and exergy efficiency is investigated for the system components. The results indicate that the performance of hybrid geothermal heat pump systems is superior to air-source heat pumps. 相似文献
7.
Energy and exergy analyses of space heating in buildings 总被引:1,自引:0,他引:1
In the present study, energy and exergy analyses are presented for the whole process of space heating in buildings. This study is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37. Throughout this paper, in all of the calculations such as heat losses and gains were taken according to Turkish Standards Institution TSE, which is in accordance with the European Standard TS EN ISO 13789. In the analysis, heating load is taken account but cooling load is neglected and the calculations presented here are done using steady state conditions. The analysis is applied to an office in Izmir with a volume of 720 m3 and a net floor area of 240 m2 as an example of application. Indoor and exterior air temperatures are 20 °C and 0 °C, respectively. It is assumed that the office is heated by a liquid natural gas (LNG) fired conventional boiler, an LNG condensing boiler and an external air–air heat pump. With this study, energy and exergy flows are investigated. Energy and exergy losses in the whole system are quantified and illustrated. The highest efficiency values in terms of energy and exergy were found to be 80.9% for external air–air heat pump and 8.69% for LNG condensing boiler, respectively. 相似文献
8.
9.
Biomass is usually gasified above the optimal temperature at the carbon-boundary point, due to the use of different types of gasifiers, gasifying media, clinkering/slagging of bed material, tar cracking, etc. This paper is focused on air gasification of biomass with different moisture at different gasification temperatures. A chemical equilibrium model is developed and analyses are carried out at pressures of 1 and 10 bar with the typical biomass feed represented by CH1.4O0.59N0.0017. At the temperature range 900–1373 K, the increase of moisture in biomass leads to the decrease of efficiencies for the examined processes. The moisture content of biomass may be designated as “optimal” only if the gasification temperature is equal to the carbon-boundary temperature for biomass with that specific moisture content. Compared with the efficiencies based on chemical energy and exergy, biomass feedstock drying with the product gas sensible heat is less beneficial for the efficiency based on total exergy. The gasification process at a given gasification temperature can be improved by the use of dry biomass and by the carbon-boundary temperature approaching the required temperature with the change of gasification pressure or with the addition of heat in the process. 相似文献
10.
The ground-water heat-pump system (GWHP) provides a high efficient way for heating and cooling while consuming a little electrical energy. Due to the lack of scientific guidance for operating control strategy, the coefficient of performance (COP) of the system and units are still very low. In this paper, the running strategy of GWHP was studied. First, the groundwater thermal transfer calculation under slow heat transfixion and transient heat transfixion was established by calculating the heat transfer simulation software Flow Heat and using correction factor. Next, heating parameters were calculated based on the building heat load and the terminal equipment characteristic equation. Then, the energy consumption calculation model for units and pumps were established, based on which the optimization method and constraints were established. Finally, a field test on a GWHP system in Beijing was conducted and the model was applied. The new system operation optimization idea for taking every part of the GWHP into account that put forward in this paper has an important guiding significance to the actual operation of underground water source heat pump. 相似文献
11.
12.
利用油田污水余热热泵供暖系统的热力经济分析 总被引:1,自引:0,他引:1
介绍了油田余热资源的现状和充分回收采油污水余热的吸收式热泵供暖系统。并与燃油锅炉和燃气锅炉供暖系统对比 ,对吸收式热泵供暖系统进行技术经济分析 相似文献
13.
14.
Meng Ni Michael K.H. Leung Dennis Y.C. Leung 《International Journal of Hydrogen Energy》2007,32(18):4648-4660
Energy and exergy analysis has been conducted to investigate the thermodynamic–electrochemical characteristics of hydrogen production by a solid oxide steam electrolyzer (SOSE) plant. All overpotentials involved in the SOSE cell have been included in the thermodynamic model. The waste heat in the gas stream of the SOSE outlet is recovered to preheat the H2O stream by a heat exchanger. The heat production by the SOSE cell due to irreversible losses has been investigated and compared with the SOSE cell's thermal energy demand. It is found that the SOSE cell normally operates in an endothermic mode at a high temperature while it is more likely to operate in an exothermic mode at a low temperature as the heat production due to overpotentials exceeds the thermal energy demand. A diagram of energy and exergy flows in the SOSE plant helps to identify the sources and quantify the energy and exergy losses. The exergy analysis reveals that the SOSE cell is the major source of exergy destruction. The energy analysis shows that the energy loss is mainly caused by inefficiency of the heat exchangers. The effects of some important operating parameters, such as temperature, current density, and H2O flow rate, on the plant efficiency have been studied. Optimization of these parameters can achieve maximum energy and exergy efficiencies. The findings show that the difference between energy efficiency and exergy efficiency is small as the high-temperature thermal energy input is only a small fraction of the total energy input. In addition, the high-temperature waste heat is of high quality and can be recovered. In contrast, for a low-temperature electrolysis plant, the difference between the energy and exergy efficiencies is more apparent because considerable amount of low-temperature waste heat contains little exergy and cannot be recovered effectively. This study provides a better understanding of the energy and exergy flows in SOSE hydrogen production and demonstrates the importance of exergy analysis for identifying and quantifying the exergy destruction. The findings of the present study can further be applied to perform process optimization to maximize the cost-effectiveness of SOSE hydrogen production. 相似文献
15.
The performance of a hybrid cooling system that combines a screw water chiller with a ground source heat pump (GSHP) was measured and analyzed at various cooling loads. In addition, the hybrid cooling system in a building was modelled sophisticatedly using EnergyPlus and then validated with the measured data. The coefficient of performance of the GSHP was lower than that of a conventional chiller in the monitored building, but the hybrid cooling system helped to stably provide the required cooling capacity at high-load conditions. The mean bias error and the normalized root-mean squared error of the predicted cooling load of the building were −8% and 12.4%, respectively. The hybrid cooling system was simulated by varying four operating parameters: the operating schedule, chilled water temperature (TCW), dry-bulb temperature (TDB), and entering water temperature (TEW). The TCW is ascertained as being the most effective control parameter in the hybrid cooling system. 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(11):5551-5563
This paper has analyzed the energy and exergy distribution of a 2.3 L turbocharged hydrogen engine by mapping characteristics experiment. The energy loss during fuel energy conversion mainly includes: exhaust energy (23.5–34.7%), cooling medium (coolant and oil) energy (21.3–34.8%), intercooler energy (0.5–3.6%) and uncounted energy (5.8–14.1%), while the proportion of effective work ranges from 25.7% to 35.1%. Results show that all kinds of energies increase with engine speeds and they are not sensitive to the loads. However, the proportions of different kind of energy exhibit different characteristics. Moreover, the turbocharger can increase the brake thermal efficiency and the maximum can be increased by 4.8%. Exergy analysis shows exergy efficiency of the coolant energy does not exceed 5%, while the exergy efficiency of the exhaust energy can reach up to 23%. And the total hydrogen fuel thermal efficiency limit is theoretically above 59%. 相似文献
17.
This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs. 相似文献
18.
For the shortcoming of air source heat pump in heating condition, a composite heat exchanger was designed which integrates fin tube and tube heat exchanger, and it can achieve synchronous and composite heat exchange in one heat exchanger between working fluids, gaseous and liquid heat source. With the above composite heat exchanger as the core component, the Solar Air Composite Heat Source Heat Pump System (SACHP) was developed which has three working modes, including single solar heat source mode, single air heat source mode and solar air dual heat sources mode. A SACHP experiment table was established and conducted a comprehensive experimental study of three working modes of this system in the standard enthalpy difference laboratory. The results show that when the ambient temperature was −15 °C, compared to the single air heat source mode, the dual heat source mode increased 62% in heat capacity and 59% in COP; when the temperature difference of combined heat transfer was 5 °C, compared to the single air heat source mode, the dual heat source mode increased 51% in heat capacity and 49% in COP. Experimental results demonstrate that the application of the solar air composite heat pump technology can accelerate the application process of the solar heat pump in air conditioners for buildings. 相似文献
19.
Computer simulation of borehole ground heat exchangers for geothermal heat pump systems 总被引:6,自引:0,他引:6
Computer simulation of borehole ground heat exchangers used in geothermal heat pump systems was conducted using three-dimensional implicit finite difference method with rectangular coordinate system. Each borehole was approximated by a square column circumscribed by the borehole radius. Borehole loading profile calculated numerically based on the prescribed borehole temperature profile under quasi-steady state conditions was used to determine the ground temperature and the borehole temperature profile. The two coupled solutions were solved iteratively at each time step. The simulated ground temperature was calibrated using a cylindrical source model by adjusting the grid spacing and adopting a load factor of 1.047 in the difference equation. With constant load applied to a single borehole, neither the borehole temperature nor the borehole loading was constant along the borehole. The ground temperature profiles were not similar at different distances from the borehole. This meant that a single finite difference scheme was not sufficient to estimate the performance of a borefield by superposition. The entire borefield should be discretized simultaneously. Comparison was made between the present method and the finite line source model with superposition. The discrepancies between the results from the two methods increased with the scale of borefield. The introduction of time schedule revealed a discrepancy between the load applied to the ground heat exchanger and that transferred from the borehole to the ground, which was usually assumed to be the same when using analytical models. Hence, in designing a large borefield, the present method should give more precise results in dynamic simulation. 相似文献