首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 °C/min. Final temperature range studied was between 300 and 700 °C and the highest liquid product yield was obtained at 550 °C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.  相似文献   

2.
《能源学会志》2020,93(1):303-311
Pyrolysis of Ulva prolifera macroalgae (UM), an aquatic biomass, was carried out in a fixed-bed reactor in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different catalyst to biomass ratio. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite and Mordenite catalyst in the conversion of UM showed that is affected by properties of zeolites. Bio-oil yield was increased in the presence of Y-Zeolite while decreased with ZSM-5 and Mordenite catalyst. Maximum bio-oil yield for non-catalytic pyrolysis was (38.5 wt%) and with Y-Zeolite catalyst (41.3 wt%) was obtained at 400 °C respectively. All catalyst showed a higher gas yield. The higher gas yield might be attributed to that catalytic pyrolysis did the secondary cracking of pyrolytic volatiles and promoted the larger small molecules. The chemical components and functional groups present in the pyrolytic bio-oils are identified by GC–MS, FT-IR, 1H-NMR and elemental analysis techniques. Phenol observed very less percentage in the case of non-catalytic pyrolysis bio-oil (9.9%), whereas catalytic pyrolysis bio-oil showed a higher percentage (16.1%). The higher amount of oxygen present in raw biomass reduced significantly when used catalyst due to the oxygen reacts with carbon and produce (CO and CO2) and water.  相似文献   

3.
Slow pyrolysis of giant mullein (Verbascum thapsus L.) stalks have been carried out in a fixed-bed tubular reactor with (Al2O3, ZnO) and without catalyst at four different temperatures between 400 to 550°C with a constant heating rate of 50°C/min and with a constant sweeping gas (N2) flow rate of 100 cm3/min. The amounts of bio-char, bio-oil, and gas produced were calculated and the compositions of the obtained bio-oils were determined by gas chromatography-mass spectrometry. The effects of pyrolysis parameters, such as temperature and catalyst, on the product yields were investigated. The results show that both temperature and catalyst have significant effects on the conversion of Verbascum thapsus L. into solid, liquid, and gaseous products. The highest liquid yield of 40.43% by weight including the aqeous phase was obtained with 10% zinc oxide catalyst at 500°C temperature. Sixty-seven different products were identified by gas chromatography-mass spectrometry in the bio-oils obtained at 500°C temperature.  相似文献   

4.
《Biomass & bioenergy》2006,30(6):592-598
The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7 cm s−1) in the presence of zeolite (20 wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using 1H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres.  相似文献   

5.
Rice straw as a bio-oil source via pyrolysis and steam pyrolysis   总被引:3,自引:0,他引:3  
The pyrolysis of rice straw was studied to estimate the effect of pyrolysis conditions on product yields and bio-oil composition when the heating rate was 5 K/min. Pyrolysis temperature, particle size, sweeping gas flow rate and steam velocity were the experimental parameters. Among the four pyrolysis temperatures; namely, 673, 773, 823 and 973 K; 823 K gave the highest bio-oil yield of 27.26%. Six different particle sizes were examined and sample having a particle size of 0.425<Dp<0.85 mm had a bio-oil yield of 27.77%. Nitrogen was used as the sweeping gas with the flow rates of either 50, 100, 200 and 400 ml/min and the highest bio-oil yield was obtained when flow rate was 200 ml/min. The bio-oil yield reached a maximum value of 35.86% with the steam velocity of 2.7 cm/s. Liquid products obtained from pyrolysis, inert atmosphere pyrolysis and steam pyrolysis were then fractionated into aspalthanes and maltanes. The aliphatic subfraction obtained by column chromatography was then analysed by GC/MS. For further structural analysis, the pyrolysis oils were conducted with 1H-NMR, oils and aliphatic subfractions with FT-IR. The chemical characterisation has shown that the oil obtained from rice straw may be potentially valuable as fuel and chemicals feedstocks.  相似文献   

6.
As the lowest cost biomass-derived liquids, pyrolysis oils (also called bio-oils) represent a promising vector for biomass to fuels conversion. However, bio-oils require upgrading to interface with existing infrastructure. A potential pathway for producing fuels from pyrolysis oils proceeds through gasification, the conversion to synthesis gas. In this work, the conversion of bio-oils to syngas via catalytic partial oxidation over Rh–Ce is evaluated using two reactor configurations. In one instance, pyrolysis oils are oxidized in excess steam in a freeboard and passed over the catalyst in a second zone. In the second instance, bio-oils are introduced directly to the catalyst. Coke formation is avoided in both configurations due to rapid oxidation. H2 and CO can be produced autothermally over Rh–Ce catalysts with millisecond contact times. Co-processing of bio-oil with methane or methanol improved the reactor operation stability.  相似文献   

7.
Conversion of lignocellulosic biomass into bio-oil through fast pyrolysis process is considered one of the promising routes to supplement conventional fossil oil. Future bio-refineries require production large amounts of bio-oil from several biomass types. Characterization of the produced bio-oils is important to determine their suitability as bio-refinery feedstock. In this study, bio-oils were produced from white oak and sweetgum woods in an auger reactor at 450°C. The yields of char, liquid, and gas were calculated. The physical characterization of bio-oils was performed based on the investigation of different properties, such as pH, density, viscosity, water content, acid value, and molecular weight distribution of bio-oil components. The chemical compositions of the bio-oils were also investigated by gas chromatography/mass spectrometry and Fourier transform infra-red analyses. The physicochemical properties of the produced bio-oils were comparable to those obtained from similar woody biomass and the oils were suitable for fuel production.  相似文献   

8.
The aim of the present work is to produce hydrogen from biomass through bio-oil. Two possible upgrading routes are compared: catalytic and non-catalytic steam reforming of bio-oils. The main originality of the paper is to cover all the steps involved in both routes: the fast pyrolysis step to produce the bio-oils, the water extraction for obtaining the bio-oil aqueous fractions and the final steam reforming of the liquids. Two reactors were used in the first pyrolysis step to produce bio-oils from the same wood feedstock: a fluidized bed and a spouted bed. The mass balances and the compositions of both batches of bio-oils and aqueous fractions were in good agreement between both processes. Carboxylic acids, alcohols, aldehydes, ketones, furans, sugars and aromatics were the main compounds detected and quantified. In the steam reforming experiments, catalytic and non-catalytic processes were tested and compared to produce a hydrogen-rich gas from the bio-oils and the aqueous fractions. Moreover, two different catalytic reactors were tested in the catalytic process (a fixed and a fluidized bed). Under the experimental conditions tested, the H2 yields were as follows: catalytic steam reforming of the aqueous fractions in fixed bed (0.17 g H2/g organics) > non-catalytic steam reforming of the bio-oils (0.14 g H2/g organics) > non-catalytic steam reforming of the aqueous fractions (0.13 g H2/g organics) > catalytic steam reforming of the aqueous fractions in fluidized bed (0.07 g H2/g organics). These different H2 yields are a consequence of the different temperatures used in the reforming processes (650 °C and 1400 °C for the catalytic and the non-catalytic, respectively) as well as the high spatial velocity employed in the catalytic tests, which was not sufficiently low to reach equilibrium in the fluidized bed reactor.  相似文献   

9.
《能源学会志》2020,93(4):1313-1323
In this work, the solar catalytic pyrolysis of Spirulina platensis microalgae using hydrotalcite as a catalyst was studied to improve the yield and quality of the bio-oil obtained from the algae. The effects of biomass loading, reaction time, and catalyst percentage on the product distribution and bio-oil composition were evaluated. The desirability function was used to identify the pyrolysis conditions that maximize the bio-oil yield and its hydrocarbon content. The experimental results indicated that the catalytic pyrolysis of Spirulina platensis produced considerable solid product content, and high liquid yields were reached in some tests favored by the catalyst presence. The hydrotalcite contributed to increasing the hydrocarbon formation in the bio-oil at lower reaction times, demonstrating the great performance of this catalyst for microalgae pyrolysis. At the optimal conditions, a bio-oil yield of 35.94% with 21.71% hydrocarbon content was achieved.  相似文献   

10.
Laurel extraction residues with zeolite and alumina catalysts were pyrolyzed in a fixed-bed reactor with a constant heating rate of 10°C min–1. The final pyrolysis temperature and sweep gas flow rate were kept constant at 500°C and 100 ml min–1 in all of the experiments, respectively. The influence of catalysts and their ratio (10, 20, 30, 40, and 50% w/w) on the pyrolysis conversion and product yields were investigated in detail. The physicochemical properties of the catalytic bio-oil were determined and compared to those of non-catalytic bio-oil. The catalytic bio-oils were examined using some spectroscopic and chromatographic techniques.  相似文献   

11.
Pyrolysis of Xanthium strumarium has been performed in a fixed-bed tubular reactor with boron minerals (ulexite, colemanite, and borax) and without catalyst at three different temperatures ranging from 350°C to 550°C with heating rate of 50°C/min. The amounts of bio-oil, bio-char, and gas generated, also the compositions of the resulting bio-oils were identified by GC-MS and FT-IR. The influences of pyrolysis parameters, such as temperature and catalyst on product yields were investigated. Temperature and catalyst were found to be the main factors affecting the conversion of Xanthium strumarium into solid, liquid, and gaseous products. The highest liquid yield (27.97%) including water was obtained with 10% colemanite (Ca2B6O11.5H2O) catalyst at 550°C temperature at a heating rate of 50°C/min when 0.224 > Dp > 0.150 mm particle size raw material and 100 cm3/min of sweeping gas flow rate were used.  相似文献   

12.
生物质催化热解研究进展   总被引:2,自引:0,他引:2  
介绍了生物质种类、生物油性质、热解反应条件对生物油产率和油品质的作用以及催化剂对催化热解反应的影响。生物质催化热解技术能够实现资源、能源、环境的高效统一,符舍社会的可持续发展原则,具有很大的开发前景。  相似文献   

13.
The aim of this study was to investigate the behavior of two distinct microalgae species during solar catalytic pyrolysis and the influence of their chemical composition and the process variables (biomass charge, reaction time, and catalyst percentage) on the product yields and bio-oil composition. For this purpose, solar catalytic pyrolysis of Spirulina platensis and Chlamydomonas reinhardtii was performed using hydrotalcite-derived mixed oxides as the catalyst. To gain more insight into the effect of composition on pyrolysis behavior, the biomasses were analyzed using various analytical techniques. The results indicated that a high percentage of catalyst (47.1%) culminated in liquid yields of 42.48% and 21.31% for Chlamydomonas pyrolysis and Spirulina pyrolysis, respectively. Additionally, Spirulina pyrolysis resulted in higher solid yields compared with Chlamydomonas pyrolysis. The results also showed that Spirulina bio-oil was rich in oxygenated compounds, probably due to its high carbohydrate content, whereas Chlamydomonas bio-oil was rich in nitrogenated compounds because of its higher protein content. The microalgae composition (lipids, protein, carbohydrates) exerted a large influence on the catalytic pathways and led to differences in yield and product distribution. A high percentage of catalysts preferentially promoted a deoxygenation of the bio-oil obtained from Spirulina solar pyrolysis compared with that obtained from Chlamydomonas pyrolysis.  相似文献   

14.
Using Ni/SiC as a catalyst, bagasse was microwave-assisted pyrolysis in a homemade quartz reactor. The results showed that with the continuous increase of Ni content, the experimental catalytic pyrolysis effect on bio-oil became more and more obvious, and the hydrogen yield gradually increased. When Ni content exceeded 8%, the hydrogen yield and bio-oil catalytic pyrolysis efficiency decreased, and the lowest bio-oil yield was 9.55% when Ni content was 15%, With the increase of power, the catalytic cracking efficiency and hydrogen yield of bio-oil increased, With the increase of catalyst dosage, the catalytic efficiency and the hydrogen yield increase gradually. When the catalyst quality exceeds 1/4 of the material, the growth rate of catalytic efficiency decreases, after alkali treatment, the variation law of hydrogen yield and bio-oil is consistent with that without alkali treatment. In contrast, more hydrogen can be produced after alkali treatment. Under the optimum conditions, the hydrogen yield was 35.85 g/kg biomass.  相似文献   

15.
The present study is aimed to investigate the upgrading of beech sawdust pyrolysis bio-oil through catalytic cracking of its vapors over Fe-modified ZSM-5 zeolite in a fixed bed tubular reactor. The zeolite supported iron catalyst was successfully prepared with varying metal loading ratios (1, 5, 10 wt%) via dry impregnation method and further characterized by BET, XRD, and SEM-EDX techniques. TG/FT-IR/MS analysis was used for the detection of biomass thermal degradation. Product yields of non-catalytic and catalytic pyrolysis experiments were determined and the obtained results show that bio-oil yields decreased in the presence of catalysts. Besides, the bio-oil composition is characterized by GC/MS. It was indicated that the entity of the ZSM-5 and Fe/ZSM-5 catalyst reveal a significant enhancement quality of the pyrolysis products in comparison with non-catalytic experiment. The catalyst increased oxygen removal from the organic phase of bio-oil and further developed the production of desirable products such as phenolics and aromatic compounds.  相似文献   

16.
In this study, pyrolysis of tomato waste has been performed in fixed bed tubular reactor at 500 °C, both in absence and presence of Cu/Al2O3 catalyst. The influences of heating rate, catalyst preparation method and catalyst loading on bio-oil yields and properties were examined. According to pyrolysis experiments, the highest bio-oil yield was obtained as 30.31% with a heating rate of 100 °C/min, 5% Cu/Al2O3 catalyst loading ratio and co-precipitation method. Results showed that the catalysts have strong positive effect on bio-oil yields. Bio-oil quality obtained from fast catalytic pyrolysis was more favorable than that obtained from non-catalytic and slow catalytic pyrolysis.  相似文献   

17.
《能源学会志》2020,93(4):1737-1746
The aim of this study was to investigate the potential of combined catalyst (ZSM-5 and CaO) for high quality bio-oil production from the catalytic pyrolysis of pinewood sawdust that was performed in Py-GC/MS and fixed bed reactor at 500 °C. In Py-GC/MS, the maximum yield of aromatic hydrocarbon was 36 wt% at biomass to combined catalyst ratio of 1:4 where the mass ratio of ZSM-5 to CaO in the combined catalyst was 4:1. An increasing trend of phenolic compounds was observed with an increasing amount of CaO, whereas the highest yield of phenolic compounds (31 wt%) was recorded at biomass to combined catalyst ratio of 1:4 (ZSM-5: CaO - 4:1). Large molecule compounds could be found to crack into small molecules over CaO and then undergo further reactions over zeolites. The water content, higher heating value, and acidity of bio-oil from the fixed bed reactor were 21%, 24.27 MJkg−1, and 4.1, respectively, which indicates that the quality of obtained bio-oil meets the liquid biofuel standard ASTM D7544-12 for grade G biofuel. This research will provide a significant reference to produce a high-quality bio-oil from the catalytic pyrolysis of woody biomass over the combined catalyst at different mass ratios of biomass to catalyst.  相似文献   

18.
An in-situ fast pyrolysis of biomass by adding metallic particles in an induction heating reactor was proposed to produce high quality bio-fuels. After adding metallic particles into biomass, the times required to reach complete pyrolysis during reed straw pyrolysis process were significantly reduced up to 28.9%. The yields of combustible gas and bio-oil products were significantly increased. Furthermore, higher-quality combustible gas and bio-oil products were obtained with the LHV of gas products and HHV of bio-oil (dry basis) increased by 14.2%–19.1% and 4.16%–16.35%, respectively, under 400–600 °C. The lower oxygen content and higher yields of aromatics, alkenes and alkanes contents in bio-oil were obtained after metallic particles addition. More importantly, up to 26.5% of the total energy consumption during pyrolysis process was reduced after adding metallic particles into biomass in an induction heating reactor. The results indicate that adding metallic particles into biomass in an induction heating reactor can significantly enhance the heat transfer, decomposition reaction intensity and energy utilization efficiency of biomass pyrolysis process with lower energy consumption and higher-quality bio-fuel production.  相似文献   

19.
This study introduces an innovative process of generating hydrogen-rich gas from biomass through the catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Water hyacinth was used as the biomass feedstock. The effects of various factors such as pyrolysis temperature, catalytic bed temperature, residence time, catalyst, and the nickel content of the catalyst on the pyrolysis productivity were investigated and the yields of H2, CO, CH4, and CO2 were obtained. Results showed that the high productivity of hydrogen can be obtained particularly by increasing the catalytic bed temperature, residence time, and catalysts. The favorable reaction conditions are as follows: a first-stage pyrolysis temperature of 650 °C–700 °C, a second-stage catalytic bed temperature of 800 °C, a catalytic pyrolysis reaction time of 17 min, and a nickel content of 9% (wt %).  相似文献   

20.
《能源学会志》2014,87(3):227-234
This paper investigates the effects of four reaction parameters that include type of catalyst, catalyst loading, reaction temperature and nitrogen gas flowrate on the liquid (bio-oil) yield from the catalytic pyrolysis of Empty Fruit Bunch (EFB). The experimental design is based on Taguchi's L9 Orthogonal Array in which the reaction parameters are varied at three levels. The maximum liquid yield is predicted based on systematic experimental runs, and is found to be at 5 wt-% of H-Y catalyst, 500 °C and at nitrogen flowrate of 100 ml min−1. The predicted maximum liquid yield is validated with an experimental run at the corresponding predicted conditions. The bio-oil produced at the optimum reaction condition is characterized and compared with known bio-oil standards in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号