首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work is to analyse the effect of the Ni(II) content for the Ni(II)-Mg(II)/γ-Al2O3 catalysts on the textural and structural characteristics of the solid, as well on the catalytic activity and selectivity to H2 for the steam reforming of glycerol at atmospheric pressure.  相似文献   

2.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

3.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

4.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

5.
CO2 reforming of CH4 to synthesis gas was investigated by cold plasma jet (CPJ) only and combination of cold plasma jet with Ni/γ-Al2O3 catalyst at atmospheric pressure. The higher selectivity of H2 and CO, and higher energy efficiency was obtained by this novel process. The optimum experimental conditions are: CH4 = 3.33 Nl/min, CO2 = 5.00 Nl/min, N2 = 8.33 Nl/min, and the input power at 770 W. The results showed that, for the plasma only, the conversions of CH4 and CO2 were 46% and 34%, the selectivities of CO and H2 were 85% and 78%, the energy efficiency was 2.9 mmol/kJ, respectively; for the combination of cold plasma jet with Ni/γ-Al2O3 catalyst, the conversions of CH4 and CO2 were increased by 14% and 6%, the yield of H2 and CO increased by 18% and 11%, the energy efficiency reached at 3.7 mmol/kJ, respectively. And the catalyst hasn't accessorial heating. The CPJ method has the advantage of simple processing and is easy to be industrialized.  相似文献   

6.
This paper describes a facile method to produce mesoporous nanostructure Ni/Al2O3, Ni/MgO, and Ni/xMgO.Al2O3 (x: MgO/Al2O3 molar ratio) catalysts prepared by “one-pot” evaporation-induced self-assembly (EISA) method with some modifications for investigating in the thermocatalytic decomposition of methane. Detailed characterizations of the material were performed with X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and N2 adsorption/desorption, hydrogen temperature-programmed reduction (H2-TPR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed oxidation (TPO). The characterizations demonstrated that the synthesized catalysts with various MgO/Al2O3 molar ratios possessed mesoporous structure with the high BET area in the range of 216.79 to 31.74 m2 g?1. The effect of different surfactants and calcination temperatures on the characterizations and catalytic activity of the catalysts were also examined in details. The experimental results showed that the catalysts exhibited high catalytic potential in this process and the 55 wt.% Ni/2 MgO·Al2O3 catalyst calcined at 600οC possessed an acceptable methane conversion (~60%) under the harsh reaction conditions (GHSV = 48000 (mL h?1 gcat?1)).  相似文献   

7.
Oxidative resistance of Ni catalysts supported on various oxides La0.7Sr0.3AlO3−δ, LaAlO3, and α-Al2O3 were investigated for hydrogen production by steam reforming of model aromatic hydrocarbons. Ni/α-Al2O3 lost its steam reforming activity by oxidation treatment. In contrast, Ni/La0.7Sr0.3AlO3−δ and Ni/LaAlO3 catalysts showed steam reforming activity even after the oxidation treatment. The XANES (X-ray absorption near-edge structure) spectra at Ni K-edge for Ni/La0.7Sr0.3AlO3−δ and Ni/α-Al2O3 after oxidation treatment revealed that the supported Ni on La0.7Sr0.3AlO3−δ and α-Al2O3 were oxidized completely. Although the mean particle size of Ni on Ni/α-Al2O3 increased by oxidation treatment or reduction treatment, Ni particles on Ni/La0.7Sr0.3AlO3−δ retained the fine structure after oxidation treatment or reduction treatment. Moreover, TPR (temperature programmed reduction) and XPS (X-ray photoelectron spectroscopy) measurements for elucidating the reducibility of Ni/La0.7Sr0.3AlO3−δ showed that the supported Ni on La0.7Sr0.3AlO3−δ was easily reduced even after the oxidation treatment.  相似文献   

8.
Nickel catalysts (10wt.%) supported on MgAl2O4 and γ-Al2O3 were prepared by the wet impregnation method and promoted with various contents of Ce0.75Zr0.25O2. X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), H2-temperature programmed reduction (TPR) and CO2-temperature programmed desorption (TPD) were employed to observe the characteristics of the prepared catalysts. Ni/γ-Al2O3 and Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 showed better activity in CO2 methane reforming with 75.7(0.93) and 75.4(0.82) CH4 conversions (and H2/CO ratio). H2O was added to feed in the range of H2O/(CH4 + CO2): 0.1–0.5 to suppress reverse water gas shift (RWGS) effect and adjusting H2/CO ratio. The CH4 conversions (and H2/CO) increased to 81(1.1) with 0.5 water/carbon mole ratio in Ni/γ-Al2O3 and 85(1.2) with 0.2 water/carbon mole ratio in Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4. The stability of Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 in the presence and absence of water was investigated. Coke formation and amount in used catalysts were examined by SEM and TGA, respectively. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3%) was observed in the presence of 0.2 water/carbon mole ratio over Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 catalyst.  相似文献   

9.
The effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane to syngas were investigated. It was found that the introduction of Y2O3 (5%, 8%, 10%) lead to significant improvement in catalytic activity and stability, and the H2/CO ratio could be adjusted via controlling the O2/CO2 ratio of the feed gas. According to the characterization results of catalysts before and after reaction, it was found that the Y2O3·γ-Al2O3 supported Ni catalysts had higher NiO reducibility, smaller Ni particle size, higher Ni dispersion and stronger basicity than those of the Ni/γ-Al2O3 catalysts. The analysis of catalysts after reaction showed that the addition of Y2O3 inhibited the Ni sintering, changed the type of coke and decreased the amount of coke on the catalysts. All the experimental results indicated that the introduction of Y2O3 to Ni/γ-Al2O3 resulted in excellent catalytic performances in autothermal reforming of methane, and Y2O3 played important roles in preventing metal sintering and coke deposition via controlling NiO reducibility, Ni particle size and dispersion, and basicity of catalysts.  相似文献   

10.
A series of noble metal (Ru, Pd, Ag) doped Ni catalysts supported on La2O3–ZrO2 mixed oxide were prepared using the sol–gel method and evaluated for use in dry reforming of coke oven gas (COG). The catalysts were investigated by means of N2 adsorption–desorption, XRD, H2-TPR, TPH, TEM and TG–DSC. TPH analysis revealed that two carbonaceous species formed on the used catalysts and that the low-temperature carbon species was sufficiently active for the reforming reaction. TEM observations indicated that highly dispersed and small metal particles were formed, suppressing coke deposition and improving catalytic performance. The test results indicated that the addition of trace amounts of noble metals effectively promotes catalytic activity. The 0.1Ru–10Ni/8LZ catalyst showed the highest performance among the bimetallic catalysts, because of the strong synergetic effect between Ru and Ni via the formation of a Ru–Ni alloy, which will be promising catalysts in the catalytic dry reforming of COG.  相似文献   

11.
The cermet consisting of electronic conductor Ni and proton conductor La2Ce2O7 (LDC) shows good chemical stability but poor hydrogen permeability. In order to improve the hydrogen permeability, novel Ni–La2−xSmxCe2O7 (x = 0, 0.025, 0.05, 0.075, 0.1 and 0.2) cermets were developed for hydrogen separation. The results show that Sm element doping of LDC can affect the rate of hydrogen permeation, with Ni–La1.95Sm0.05Ce2O7 possessing the highest hydrogen permeation fluxes.  相似文献   

12.
Oxidative steam reforming (OSR) of n-propanol was studied over new Ni catalysts (ca. 7% Ni wt/wt) supported on Y2O3–ZrO2 oxides with different yttrium content (2–41 % Y2O3 wt/wt). Materials were characterized by X-ray diffraction, temperature-programmed reduction, X-ray photoelectron and Raman spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis and high resolution transmission electron microscopy. Samples were used in calcined form and tested in the temperature range 673–773 K using a reactant feed of n-propanol/water/O2 at a molar ratio 1/9/0.5. Hydrogen production is related with the support composition and Ni dispersion.  相似文献   

13.
A dual bed catalyst system consisting of a metallic Ni monolith catalyst in the front followed by a supported nickel catalyst Ni/MgAl2O4 has been studied for the autothermal partial oxidation of methane to synthesis gas. The effects of bed configuration, reforming bed length, feed temperature and gas hourly space velocity on the reaction as well as the stability are investigated. The results show that the metallic Ni monolith in the front functions as the oxidation catalyst, which prevents the exposure of the reforming catalyst in the back to the very high temperature, while the supported Ni/MgAl2O4 in the back functions as the reforming catalyst which further increases the methane conversion by 5%. A typical 5 mmNi monolith–5mmNi/MgAl2O4 dual bed catalyst exhibits methane conversion and hydrogen and carbon monoxide selectivities of 85.3%, 91.5% and 93.0%, respectively, under autothermal conditions at a methane to oxygen molar ratio of 2.0 and gas hourly space velocity of 1.0 × 105 h−1. The dual bed catalyst system is also very stable.  相似文献   

14.
The catalytic activity of Ni/CeO2–Al2O3 catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV–vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO2 dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 °C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H2 yield with reasonably low amounts of CO.  相似文献   

15.
Ni catalysts supported on commercial α-Al2O3 modified by addition of CeO2 and/or ZrO2 were prepared in the present work. Since the principal objective was to evaluate the behavior of these systems and the support effect on the stability, methane reforming reactions were studied with steam, carbon dioxide, partial oxidation and mixed reforming. Results show that catalysts supported on Ce–Zr–α-Al2O3 composites present better reforming activity and stability noticeably higher than in the case of the reference support. With respect to composites, the presence of mixed oxides of CexZr1−xO2 type facilitates the formation of active phases with higher interaction. This fact reduces the deactivation by sintering conferring to the system a higher contribution of adsorbed oxygen species, favoring the deposited carbon elimination. These improvements resulted in being dependent on the Ce:Zr ratio of the composite, thus obtaining more stable catalysts for Ce:Zr = 4:1 ratios.  相似文献   

16.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

17.
The use of Nickel–Metal Hydride (Ni–MH) batteries for traction application in electric and hybrid vehicles is on the rise. High-rate charge/discharge characteristics are important parameters for electric vehicle applications. The ability to reduce charging time is essential in these traction applications. In this paper, the performance of assembled Ni–MH batteries (1.2 V, 0.5 Ah specimen cells) when subjected to different charging rates is described. Changes in battery voltage during charging were monitored with a particular emphasis on the quest for fast recharge characteristics. The charging curves reveal the formation of different types of phases. Hydrogen evolution resulted in flat charge profile after certain amount of overcharging. The changes in discharge level after different rates of charging are insignificant. This paper describes the fast rechargeability of assembled Ni–MH cells under various fast-charge regimes.  相似文献   

18.
In order to obtain chemically stable hydrogen-permeable cermet membranes against CO2 and H2O, the composite membranes consisting of Ni and Ba(Zr0.7Pr0.1Y0.2)O3−δ (BZPY) are fabricated by the dry-press technique and reducing atmosphere sintering process. SEM results show that the cermet membrane is extremely dense and metal nickel is randomly distributed in BZPY oxide matrix. Hydrogen permeation properties of the Ni-BZPY membranes are systemically studied including the influence of the operating temperature, H2 concentration in feed stream, humidification degree and membrane thickness. The Ni-BZPY membrane presents good chemical stability in humid condition or CO2-containing environments and is potential candidates for hydrogen separation.  相似文献   

19.
MmMg12–Ni amorphous or nanocrystalline composites (Mm: Ce-rich mischmetal) were prepared through the ball-milling method, and their electrochemical hydrogen storage performance was investigated and compared with that of ball-milled CeMg12–Ni composites. It was found that the ball-milled MmMg12–Ni composites had larger initial discharge capacities and better high rate dischargeability. Analysis of electrochemical impedance spectra (EIS) shows that the reaction resistance and hydrogen diffusion resistance of the ball-milled MmMg12–Ni composites are lower as a result of the decrease in Ce content, and thus can contribute to the larger discharge capacity and better high rate dischargeability. Additionally, the cycle performance of the ball-milled MmMg12–Ni composites is better than those of the ball-milled CeMg12–Ni composites. This may be related to the formation of a Nd oxide or Nd(OH)3 film on surface of the MmMg12 alloys.  相似文献   

20.
Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号