首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pressurized solid oxide fuel cell–gas turbine hybrid system (SOFC–GT system) has been received much attention for a distributed power generation due to its high efficiency. When considering an energy management of the system, it is found that a heat input is highly required to preheat air before being fed to the SOFC stack. The recirculation of a high-temperature cathode exhaust gas is probably an interesting option to reduce the requirement of an external heat for the SOFC–GT system. This study aims to analyze the pressurized SOFC–GT hybrid system fed by ethanol with the recycle of a cathode exhaust gas via a simulation study. Effect of important operating parameters on the electrical efficiency and heat management of the system is investigated. The results indicate that an increase in the operating pressure dramatically improves the system electrical efficiency. The suitable pressure is in a range of 4–6 bar, achieving the highest system electrical efficiency and the lowest recuperation energy from the waste heat of the GT exhaust gas. In addition, it is found that the waste heat obtained from the GT is higher than the heat required for the system, leading to a possibility of the SOFC–GT system to be operated at a self-sustainable condition. Under a high pressure operation, the SOFC–GT system requires a high recirculation of the cathode exhaust gas to maintain the system without supplying the external heat; however, the increased recirculation ratio of the cathode exhaust gas reduces the system electrical efficiency.  相似文献   

2.
In this article, an internal-reforming solid oxide fuel cell–gas turbine (IRSOFC–GT) hybrid system is modeled and analyzed from thermal (energy and exergy), economic, and environmental points of view. The model is validated using available data in the literature. Utilizing the genetic algorithm optimization technique, multi-objective optimization of modeled system is carried out and the optimal values of system design parameters are obtained. In the multi-objective optimization procedure, the exergy efficiency and the total cost rate of the system (including the capital and maintenance costs, operational cost (fuel cost), and social cost of air pollution for CO, NOx, and CO2) are considered as objective functions. A sensitivity analysis is also performed in order to study the effect of variations of the fuel unit cost on the Pareto optimal solutions and their corresponding design parameters. The optimization results indicate that the final optimum design chosen from the Pareto front results in exergy efficiency of 65.60% while it leads to total cost of 3.28 million US$ year−1. It is also demonstrated that the payback time of the chosen design is 6.14 years.  相似文献   

3.
This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.  相似文献   

4.
《Journal of power sources》2002,105(2):222-227
A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell–gas turbine (SOFC–GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC–GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC–GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC–GT–ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC–GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger stationary SOFC–GT systems. This leads to an electrical-efficiency of 45% of a cycle used as a basis for a design study. The result of the design study is that the space available in a mid-class car allows the placement of such a system, including space reserves. A further improvement of the system might allow an electrical-efficiency of about 55%.  相似文献   

5.
In this paper, a novel process for the production of pure hydrogen from natural gas based on the integration of solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) is presented. In this configuration, the SOFC is fed by natural gas and provides electricity and heat to the SOEC, which carries out the separation of steam into hydrogen and oxygen. Depending on the system layout considered, the oxygen available at the SOEC anode outlet can be either mixed with the SOFC cathode stream in order to improve the SOFC performance or regarded as a co-product. Two configurations of the cell stack are studied. The first consists of a stack with the same number of SOFCs and SOECs working at the same current density. In this case, since in typical operating conditions the voltage delivered by the SOFC is lower than the one required by the SOEC, the required additional power is supplied by means of an electric grid connection. In the second case, the electricity balance is compensated by providing additional SOFCs to the stack, which are fed by a supplementary natural gas feed. Simulations carried out with Aspen Plus show that pure hydrogen can be produced with a natural gas to hydrogen LHV-efficiency that is about twice the value of a typical water electrolyzer and comparable to that of medium-scale reformers.  相似文献   

6.
《Energy》2003,28(6):497-518
A simultaneous optimization of the design and operation of a district heating, cooling and power generation plant supplying a small stock of residential buildings has been undertaken with regards to cost and CO2 emissions. The simulation of the plant considers a superstructure including a solid oxide fuel cell–gas turbine combined cycle, a compression heat pump, a compression chiller and/or an absorption chiller and an additional gas boiler. The Pareto-frontier obtained as the global solution of the optimization problem delivers the minimal CO2 emission rates, achievable with the technology considered for a given accepted investment, or respectively the minimal cost associated with a given emission abatement commitment.  相似文献   

7.
A techno-economic-environmental optimization of a pressurized solid oxide fuel cell-gas turbine (SOFC-GT) hybrid coupled with a small-scale seawater reverse osmosis (SWRO) desalination unit is presented. The overall exergy efficiency and cost rate of the system are maximized and minimized, respectively, using a genetic algorithm. The optimum solution selected, representing a trade-off between both optimization objectives, yields 2.4 MWe of electric power and 107 m3/day of permeate, at an overall exergy efficiency and cost rate of 70.5% and 0.0233 USD/s, respectively. These metrics compare favorably with those of alternative coupled SOFC-GT-thermal desalination systems previously optimized in the literature. Compared with the selected trade-off solution, single-objective optimizations of exergy efficiency and cost rate would permit a further improvement in exergy efficiency of 6%, and 9% reduction in cost rate, respectively. For the optimum economic solution, the SWRO unit would be effectively eliminated, with the system reducing to a SOFC-GT power plant. The system payback time is mostly sensitive to electricity prices, and ranges from two to ten years for typical economic parameters, but would become unprofitable in the most unfavorable economic context considered.  相似文献   

8.
The objective of this paper is to experimentally determine the efficiency and viability of the performance of an advanced trigeneration system that consists of a micro gas turbine in which the exhaust gases heat hot thermal oil to produce cooling with an air cooled absorption chiller and hot water for heating and DHW. The micro gas turbine with a net power of 28 kW produces around 60 kW of heat to drive an ammonia/water air-cooled absorption chiller with a rated capacity of 17 kW. The trigeneration system was tested in different operating conditions by varying the output power of the micro gas turbine, the ambient temperature for the absorption unit, the chilled water outlet temperature and the thermal oil inlet temperature. The modelling performance of the trigeneration system and the electrical modelling of the micro gas turbine are presented and compared with experimental results. Finally, the primary energy saving and the economic analysis show the advantages and drawbacks of this trigeneration configuration.  相似文献   

9.
The lack of electric power in isolated communities in the Brazilian Amazon region has become one of the barriers to economic and social development. Currently, the main technologies that provide electric power to these communities are diesel generators. This non-renewable energy source, besides causing serious problems to the environment and human health, have high maintenance and operational costs. This paper presents a study on the use of photovoltaic and fuel cells for continuous supply of electric power. The paper outlines the technical and costs characteristics of a pilot project set up in an environmental protection area, located in the state of Tocantins, Brazil. The pilot project uses solar energy as the primary electric power production source. Surplus energy stored in the hydrogen produced by the electrolysis of water is later transformed into electric power by the fuel cells during periods when there is little or no sunlight. A comparative study between the technologies and potential configurations meeting the needs of isolated communities in the Amazon through simulations based on HOMER software are presented. As result, this paper outlines some policies to promote the use of renewable energy sources in isolated areas in Brazil derived from the pilot project.  相似文献   

10.
The main objective of this work is to model a renewable energy system that meets a known electric load with the combination of a photovoltaic (PV) array, a diesel generator and batteries. The replacement of conventional technologies with hydrogen technologies is examined. The analysis utilizes the power load data from an electric machinery laboratory located in Kavala town, Greece. The modeling, optimization and simulation of the proposed system were performed using HOMER software. Different combinations of PV, generators, and batteries sizes were selected in order to determine the optimal combination of the system on the basis of the Net Present Cost (NPC) method.  相似文献   

11.
Ni alloys are examined as redox-resistant alternatives to pure Ni for solid oxide fuel cell (SOFC) anodes. Among the various candidate alloys, Ni–Co alloys are selected due to their thermochemical stability in the SOFC anode environment. Ni–Co alloy cermet anodes are prepared by ammonia co-precipitation, and their electrochemical performance and microstructure are evaluated. Ni–Co alloy anodes exhibit high durability against redox cycling, whilst the current-voltage characteristics are comparable to those of pure Ni cermet anodes. Microstructural observation reveals that cobalt-rich oxide layers on the outer surface of the Ni–Co alloy particles protect against further oxidation within the Ni alloy. In long-term durability tests using highly humidified hydrogen gas, the use of a Ni–Co cermet with Gd-doped CeO2 suppresses degradation of the power generation performance. It is concluded that Ni–Co alloy cermet anodes are highly attractive for the development of robust SOFCs.  相似文献   

12.
The electrolyte material Ce0.85Sm0.15O1.92 (SDC) powders are synthesized by glycine–nitrate processes and BaCe0.83Y0.17O3−δ (BCY) powders are synthesized by sol–gel processes, respectively. Then SDC–BCY composite electrolytes are prepared by mixing SDC and BCY. The SDC and BCY powders are mixed in the weight ratio of 95:5, 90:10 and 85:15 and named as SB95, SB90 and SB85, respectively. The electrical properties of SDC and SDC–BCY composites are investigated. The experimental results show that SDC–BCY composites exhibit the excellent conductivity and could significantly enhance the fuel cell performances. The behavior that SDC–BCY composites display hybrid proton and oxygen ion conduction is substantiated. Among these electrolytes, the maximum power density reaches as high as 159 mW cm−2 for the fuel cell based on SB90 composite electrolyte at 600 °C.  相似文献   

13.
A series of barium aluminosilicate glasses modified with CaO and B2O3 were prepared and evaluated with respect to their suitability in sealing planar solid oxide fuel cells (SOFCs). At a target operating temperature of 750 °C, the long-term coefficient of thermal expansion (CTE) of one particular composition (35 mol% BaO, 15 mol% CaO, 10 mol% B2O3, 5 mol% Al2O3, and bal. SiO2) was found to be particularly stable, due to devitrification to a mixture of glass and ceramic phases. This sealant composition exhibits minimal chemical interaction with the yttria-stabilized zirconia electrolyte, yet forms a strong bond with this material. Interactions with metal components were found to be more extensive and depended on the composition of the metal oxide scale that formed during sealing. Generally alumina-scale formers exhibited a more compact reaction zone with the glass than chromia-scale forming alloys. Mechanical measurements conducted on the bulk glass–ceramic and on seals formed using these materials indicate that the sealant is anticipated to display adequate long-term strength for most conventional stationary SOFC applications.  相似文献   

14.
Electrophoretic deposition (EPD) of protective coatings on solid oxide fuel cell (SOFC) interconnects is an efficient method to mitigate ‘chromium poisoning’, which is a primary reason for degradation of fuel cell performance. Cu–Mn spinels and Mn–Co spinels are the most widely used materials for such coatings. In this study, four spinel coatings were examined; CuMn2O4, CuNi0.2Mn1.8O4, MnCo2O4, and MnFe0.34Co1.66O4. The coatings were evaluated on multiple criteria; including phase stability, microstructural stability, conductivity, Cr gettering ability, ability to act as a diffusion barrier to outward chromium and inward oxygen diffusion, and the ability to limit the increase in the area specific resistance (ASR) during high temperature oxidation exposures. The results showed that, while different coatings have best individual characteristics, overall CuNi0.2Mn1.8O4 was the best candidate for the coatings operating in the intermediate temperature range due to its best sinterability, highest conductivity, lowest ASR, phase stability over the operational temperature range, lower cost and good resistance to outward chromium and inward oxygen diffusion.  相似文献   

15.
The idea of control strategy of SOFC operating to meet demand of a public utility building was presented. The strategy was formulated with the support of Artificial Neural Network. The network was used to predict the demand for electricity. The calculations were carried out on the example of a building of the Institute of Heat Engineering Warsaw University of Technology. The control strategy is influenced by various factors depending on changes in market conditions and operating characteristics of the cell. We can define different objective functions eg: working for own needs, for maximum profit and maximum service life. The article presents a simulation of SOFC operation for demand profile of the IHE building from the selected time period.  相似文献   

16.
《Journal of power sources》2001,92(1-2):88-94
As one of the key technologies in the development of a direct internal-reforming solid oxide fuel cell, catalytic activity and stability of a Ni–YSZ–CeO2 anode on a zirconia electrolyte for the steam reforming of methane was investigated by experiments using a differential fuel cell reactor. The effects of the partial pressure of CH4, H2O and H2, and temperature as well as the electrochemical oxidation on the catalytic activity were analyzed. It was found that the catalytic activity of the Ni–YSZ–CeO2 anode was higher than that of the Ni–YSZ reported especially at low temperature. A deterioration of the catalytic activity of the anode was observed at low PH2 and high PH2O atmosphere, and also at high current densities. This might be caused by the oxidation of the Ni surface by H2O in the reaction gas and that produced by the anodic reaction. A rate equation for a fractional function for the steam reforming on open circuit was also proposed.  相似文献   

17.
In this study, a small portable fuel cell/battery hybrid system has been developed. The system consists of a single portable direct borohydride/peroxide fuel cell (DBPFC), NiMH battery and power management unit (PMU). The battery has been used as a primary power source and has been discharged at constant load. When its state of charge is reduced, the DBPFC charges the battery and powers the load simultaneously. A DC–DC Boost converter has been used as a PMU. The DBPFC has provided the total power of 0.21 Wh into the system during the charge. During this experimental study fuel (NaBH4) efficiency of 37% has been achieved in the hybrid system, while the system efficiency has been calculated as 34.5%.  相似文献   

18.
Abstract

A reversible solid oxide fuel cell system can act as an energy storage device by storing energy in the form of hydrogen and heat, buffering intermittent supplies of renewable electricity such as tidal and wave generation. The most widely used electrodes for the cell are lanthanum strontium manganate–yttria stabilised zirconia and Ni–yttria stabilised zirconia. Their microstructure depends on the fabrication techniques, and determines their performance. The concept and efficiency of reversible solid oxide fuel cells are explained, along with cell geometry and microstructure. Electrode fabrication techniques such as screen printing, dip coating and extrusion are compared according to their advantages and disadvantages, and fuel cell system commercialisation is discussed. Modern techniques used to evaluate microstructure such as three-dimensional computer reconstruction from dual beam focused ion beam–scanning electron microscopy or X-ray computed tomography, and computer modelling are compared. Reversible cell electrode performance is measured using alternating current impedance on symmetrical and three electrode cells, and current/voltage curves on whole cells. Fuel cells and electrolysis cells have been studied extensively, but more work needs to be done to achieve a high performance, durable reversible cell and commercialise a system.  相似文献   

19.
Solid oxide fuel cell–micro-gas turbine (SOFC–MGT) hybrid power plants integrate a solid oxide fuel cell and a micro-gas turbine and can achieve efficiencies of over 60% even for small power outputs (200–500 kW). The SOFC–MGT systems currently developed are fueled with natural gas, which is reformed inside the same stack, but the use of alternative fuels can be an interesting option. In particular, as the reforming temperature of methanol and di-methyl-ether (DME) (200–350 °C) is significantly lower than that of natural gas (700–900 °C), the reformer can be sited outside the stack. External reforming in SOFC–MGT plants fueled by methanol and DME enhances efficiency due to improved exhaust heat recovery and higher voltage produced by the greater hydrogen partial pressure at the anode inlet. The study carried out in this paper shows that the main operating parameters of the fuel reforming section (temperature and steam-to-carbon ratio (SCR)) must be carefully chosen to optimise the hybrid plant performance. For the stoichiometric SCR values, the optimum reforming temperature for the methanol fueled hybrid plant is approximately 240 °C, giving efficiencies of about 67–68% with a SOFC temperature of 900 °C (the efficiency is about 72–73% at 1000 °C). Similarly, for DME the optimum reforming temperature is approximately 280 °C with efficiencies of 65% at 900 °C (69% at 1000 °C). Higher SCRs impair stack performance. As too small SCRs can lead to carbon formation, practical SCR values are around one for methanol and 1.5–2 for DME.  相似文献   

20.
This work presents a zero-dimensional PEM fuel cell UI-characteristic model created in MATLAB Simulink® for operation with dry or humidified air supply. It is parameterised and validated based on the results of stack operation by varying stack temperature (50–80 °C), gas pressure (1.0–2.4 bar) and air humidification (0.0–1.0). The model is based on physical and electrochemical correlations and expanded by empirically assumptions concerning the influence of the humidification and limiting current density on the performance. The UI-model is intended to be integrated into a comprehensive zero-emission powertrain model. Since non-humidified operation of PEM fuel cell systems provides benefits for mobile applications by reducing space demand and system complexity, the objective of the model is to relate performance to the operating conditions and underlying physical parameters. Results confirm the feasibility of a self-humidifying stack operation at high performance by optimal parameter setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号