共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermotolerant Klebsiella sp. TR17 for production of hydrogen from crude glycerol was investigated. Results from Plackett–Burman design indicated that the significant variables, which influenced hydrogen production, were KH2PO4 and NH4Cl (for buffer capacity and nitrogen source). Subsequently, the two selected variables and crude glycerol were optimized by the Central Composite design for achieving maximum hydrogen and ethanol yield. The concentration of crude glycerol, KH2PO4, and NH4Cl had an individual effect on both hydrogen and ethanol yield (p < 0.05), while KH2PO4 and NH4Cl had an interactive effect on ethanol yield (p < 0.05). The optimum medium components were 11.14 g/L crude glycerol, 2.47 g/L KH2PO4, and 6.03 g/L NH4Cl. The predicted maximum simultaneous hydrogen and ethanol yield were 0.27 mol H2/mol glycerol and 0.63 mol EtOH/mol glycerol, respectively. Validation of the predicted optimal conditions exhibited similar hydrogen and ethanol yield of 0.26 mol H2/mol glycerol and 0.58 mol EtOH/mol glycerol, respectively. 相似文献
2.
Sanjay K.S. Patel Prasun Kumar Sanjeet Mehariya Hemant J. Purohit Jung-Kul Lee Vipin C. Kalia 《International Journal of Hydrogen Energy》2014
Defined co-cultures of hydrogen (H2) producers belonging to Citrobacter, Enterobacter, Klebsiella and Bacillus were used for enhancing the efficiency of biological H2 production. Out of 11 co-cultures consisting of 2–4 strains, two co-cultures composed of Bacillus cereus EGU43, Enterobacter cloacae HPC123, and Klebsiella sp. HPC793 resulted in H2 yield up to 3.0 mol mol−1 of glucose. Up-scaling of the reactor by 16-fold resulted in a corresponding increase in H2 production with an actual evolution of 7.44 L of H2. It constituted 58.2% of the total biogas. Continuous culture evolution of H2 by co-cultures (B. cereus EGU43 and E. cloacae HPC123) immobilized on ligno-cellulosic materials resulted in 6.4-fold improvement in H2 yield compared to free floating bacteria. This synergistic influence of B. cereus and E. cloacae can offer a better strategy for H2 production than undefined or mixed cultures. 相似文献
3.
Xiao-Bing Wu Gang-Feng Huang Li-Ping Bai Min-Nan Long Qing-Xi Chen 《International Journal of Hydrogen Energy》2014
Biofuels production from lignocellulose hydrolysates by microbe fermentation has merited attention because of the mild reaction conditions involved and the clean nature of the process. In this work, xylulokinase (XK) and xylose isomerase (XI) were overexpressed in Klebsiella oxytoca HP1 to enhance hydrogen production by the fermentation of xylose. The recombinant strains exhibited higher enzyme activity of XI or XK compared with the wild strain. Hydrogen production from pure xylose, xylose/glucose mixtures and bamboo stalk hydrolysate was significantly enhanced with the overexpression of XI and XK in K. oxytoca HP1 in terms of total hydrogen yield (THY), hydrogen yield per mole substrate (HYPM) and hydrogen production rate (HPR). The HYPM of K. oxytoca HP1/xylB and K. oxytoca HP1/xylA reached 1.93 ± 0.05 and 2.46 ± 0.05 mol H2/mol xylose, respectively in pure xylose, while the value for the wild strain was 1.68 ± 0.04 mol H2/mol xylose. The xylose consumption rate (XCR) for the recombinant strain was significantly higher than that for the wild strain, particularly in the early stage of fermentation. Relative to the wild type, hydrogen yield (HY) from 1 g of preprocessed bamboo powder of HP1/xylB and HP1/xylA increased by 33.04 and 41.31%, respectively. It was concluded that overexpression of XK or XI was able to promote hydrogen production from xylose and xylose/glucose mixtures by simultaneously increasing the utilization efficiency of xylose and weakening the inhibitory effect of glucose on xylose use. In addition, the results indicated that overexpression technology was an effective way to further increase hydrogen production from lignocellulosic hydrolysates. 相似文献
4.
Jong-Hwan Shin Jong Hyun Yoon Eun Kyoung Ahn Mi-Sun Kim Sang Jun Sim Tai Hyun Park 《International Journal of Hydrogen Energy》2007
A new fermentative hydrogen-producing bacterium was isolated from a domestic landfill and identified as Enterobacter asburiae using 16S rRNA gene sequencing and DNA–DNA hybridization methods. The isolated bacterium, designated as Enterobacter asburiae SNU-1, is a new species that has never been examined as a potential hydrogen-producing bacterium. This study examined the hydrogen-producing ability of Enterobacter asburiae SNU-1. During fermentation, the hydrogen was mainly produced in the stationary phase. The hydrogen yield based on the formate consumption was 0.43 mol hydrogen/mol formate. This strain was able to produce hydrogen over a wide range of pH (4–7.5), with the optimum pH being pH 7. The level of hydrogen production was also affected by the initial glucose concentration, and the optimum value was found to be 25 g glucose/l. The maximum and overall hydrogen productivities were 398 and 174 ml/l/hr, respectively, at pH 7 with an initial glucose concentration of 25 g/l. This strain could produce hydrogen from glucose and many other carbon sources such as fructose, sucrose, and sorbitol. 相似文献
5.
Rahul Mangayil Ville SantalaMatti Karp 《International Journal of Hydrogen Energy》2011,36(23):15187-15194
In this study, production of hydrogen (H2) from glucose, xylose, galactose, mannose, arabinose and rhamnose by a strain isolated from activated sludge was investigated. The strain, named as Citrobacter sp. CMC-1, was enriched in cellobiose amended minimal media. Based on 16S rRNA sequence, the CMC-1 strain is a close relative of Citrobacter amalonaticus strain SA01 (99%). Optimal cultivation parameters for H2 production and growth such as pH and temperature were investigated. H2 yields from glucose at optimal conditions (pH 6.0 and 34 °C) were 1.82 ± 0.02 mol-H2/mol-glucose. Strain CMC-1 fermented galactose, mannose, xylose, arabinose and rhamnose. After 48 h incubation, the strain CMC-1 completely fermented all sugars tested, except arabinose. Increase in fermentation period lowered residual formate level in the media and improved H2 production for galactose, mannose and xylose (1.68 ± 0.24, 1.93 ± 0.14 and 1.63 ± 0.07 mol-H2/mol-substrate respectively). 相似文献
6.
Annukka E. Mäkinen Marika E. Nissilä Jaakko A. Puhakka 《International Journal of Hydrogen Energy》2012
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles. 相似文献
7.
A thermophilic hydrogen producer was isolated from hot spring sediment and identified as Thermoanaerobacterium thermosaccharolyticum KKU19 by biochemical tests and 16S rRNA gene sequence analysis. The strain KKU19 showed the ability to utilize various kinds of carbon sources. Xylose was the preferred carbon source while peptone was the preferred organic nitrogen source. The optimum conditions for hydrogen production and cell growth on xylose were an initial pH of 6.50, temperature of 60 °C, a carbon to nitrogen ratio of 20:1, and a xylose concentration of 10.00 g/L. This resulted in a maximum cumulative hydrogen production, hydrogen production rate and hydrogen yield of 3020 ± 210 mL H2/L, 3.95 ± 0.20 mmol H2/L h and 2.09 ± 0.02 mol H2/mol xylose consumed, respectively. Acetic and butyric acids were the main soluble metabolite products suggesting acetate and butyrate type fermentation. 相似文献
8.
Wan-Qian GuoZhao-Hui Meng Nan-Qi Ren Zhen-Peng ZhangFu-Yi Cui 《International Journal of Hydrogen Energy》2011,36(10):5843-5848
The optimization of process conditions for the production of hydrogen by Ethanoligenens harbinense W1 was investigated using response surface methodology (RSM). Three parameters namely inoculum to substrate ratio, initial pH value and temperature were chosen as variables. The adequately high R2 value (99.4%) indicated the statistical significance of the model. The optimum process conditions for hydrogen production rate were determined by analyzing the response surface three-dimension surface plot and contour plot and by solving the regression model equation with Design Expert software. The central composite design (CCD) was used to optimize the process conditions, which showed that an inoculum to substrate ratio of 14%, initial pH value of 4.32 and the experimental temperature of 34.97 °C were the best conditions. Under the optimized conditions, the maximum specific hydrogen production rate (SHPR) was 35.74 mL/g-CDW.h based on cell dry weight. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the inoculum to substrate ratio of 14%, initial pH value of 4.3 and the experimental temperature of 35 °C. The maximum SHPR was estimated at 35.57 mL/g-CDW.h, which further verified the practicability of this optimum strategy. 相似文献
9.
Lijing Jiang Chuannan Long Xiaobing Wu Hongxiu Xu Zongze Shao Minnan Long 《International Journal of Hydrogen Energy》2014
A unique thermophilic fermentative hydrogen-producing strain H53214 was isolated from a deep-sea hydrothermal vent environment, and identified as Caloranaerobacter azorensis based on bacterial 16S rRNA gene analysis. The optimum culture condition for hydrogen production by the bacterium, designated C. azorensis H53214, was investigated by the response surface methodology (RSM). Eight variables including the concentration of NaCl, glucose, yeast, tryptone, FeSO4 and MgSO4, initial pH and incubation temperature were screened based on the Plackett–Burman design. The results showed that initial pH, tryptone and yeast were significant variables, which were further optimized using the steepest ascent method and Box–Behnken design. The optimal culture conditions for hydrogen production were an initial pH of 7.7, 8.3 g L−1 tryptone and 7.9 g L−1 yeast. Under these conditions, the maximum cumulative hydrogen volume, hydrogen yield and maximum H2 production rate were 1.58 L H2 L−1 medium, 1.46 mol H2 mol−1 glucose and 25.7 mmol H2 g−1 cell dry weight (CDW) h−1, respectively. By comparison analysis, strain H53214 was superior to the most thermophilic hydrogen producers because of the high hydrogen production rate. In addition, the isolation of C. azorensis H53214 indicated the deep-sea hydrothermal environment might be a potential source for fermentative hydrogen-producing thermophiles. 相似文献
10.
Ji-Fei Xu Nan-Qi Ren Ai-Jie Wang Jie Qiu Qing-Liang Zhao Yu-Jie Feng Bing-Feng Liu 《International Journal of Hydrogen Energy》2010,35(24):13467-13474
A novel mesophilic hydrogen-producing bacterium was isolated from cow dung compost and designated as Clostridium sp. HR-1 by 16S rRNA gene sequence. The optimum condition for hydrogen production by strain HR-1 was pH of 6.5, temperature of 37 °C and yeast extract as nitrogen sources. The strain HR-1 has the ability to utilize kinds of hexose and pentose as carbon sources for growth and H2 production. Cell growth and hydrogen productivity were investigated for batch fermentation on media containing different ratios of xylose and glucose. Glucose was the preferred substrate in the glucose and xylose mixtures. The high glucose fraction had higher cell biomass production rate. The rate of glucose consumption was higher than xylose consumption, and remained essentially constant independent of xylose content of the mixture. The rate of xylose utilization was decreased with increasing of the glucose fraction. The average H2 yield and specific H2 production rates with xylose and glucose are 1.63 mol-H2/mol xylose and 11.14-H2 mmol/h g-cdw, and 2.02 mol-H2/mol-glucose and 9.37 mmol-H2/h g-cdw, respectively. Using the same initial substrate concentration, the maximum average H2 yield and specific H2 production rates with the mixtures of 9 g/l xylose and 3 g/l glucose was 2.01 mol-H2/mol-mixed sugar and 12.56 mmol-H2/h g-cdw, respectively. During the fermentation, the main soluble microbial products were ethanol and acetate which showed trends with the different ratios of xylose and glucose. 相似文献
11.
The effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures was investigated in batch tests, and the optimization of fermentative hydrogen production process was conducted by response surface methodology with a central composite design. Experimental results showed that temperatures, initial pH and glucose concentrations had impact on fermentative hydrogen production individually and interactively. The maximum hydrogen yield of 289.8 mL/g glucose was estimated at the temperature of 38.6 °C, the initial pH of 7.2 and the glucose concentration of 23.9 g/L. The maximum hydrogen production rate of 28.2 mL/h was estimated at the temperature of 37.8 °C, the initial pH of 7.2 and the glucose concentration of 27.6 g/L. The maximum substrate degradation efficiency of 96.9% was estimated at the temperature of 39.3 °C, the initial pH of 7.0 and the glucose concentration of 26.8 g/L. Response surface methodology was a better method to optimize the fermentative hydrogen production process. Modified logistic model could describe the progress of cumulative hydrogen production in the batch tests of this study successfully. 相似文献
12.
Wuttinun Raksajit Khomson Satchasataporn Kirsi Lehto Pirkko Mäenpää Aran Incharoensakdi 《International Journal of Hydrogen Energy》2012
The efficiency of hydrogen production by different cyanobacterial species depends on several external factors. We report here the factors enhancing hydrogen production by filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Cells adapted to dark-anaerobic conditions produced hydrogen consistent with increased hydrogenase activity when supplemented with Fe2+. Stimulation of hydrogen production could be achieved by addition of reductants, either dithiothreitol or β-mercaptoethanol with higher production observed with the latter. Additionally, Fe2+ and β-mercaptoethanol added to nitrogen- and sulphur-deprived cells significantly stimulated H2 production with maximal value of 5.91 ± 0.14 μmol H2 mg Chla−1 h−1. Glucose and a small increase of osmolality imposed by either NaCl or sorbitol enhanced hydrogen production. High rates of hydrogen production were obtained in cells adapted in nitrogen-deprived medium with neutral and alkaline external pH, significant decrease of hydrogen production occurred under acidic external pH. 相似文献
13.
A hydrogen producing strain newly isolated from anaerobic sludge in an anaerobic bioreactor, was identified as Clostridium beijerinckii Fanp3 by 16S rDNA gene sequence analysis and detection by BioMerieux Vitek. The strain could utilize various carbon and nitrogen sources to produce hydrogen, which indicates that it has the potential of converting renewable wastes into hydrogen. In batch cultivations, the optimal initial pH of the culture medium was between 6.47 and 6.98. Using 0.15 M phosphate as buffer could alleviate the medium acidification and improve the overall performance of C. beijerinckii Fanp3 in hydrogen production. Culture temperature of 35 °C was established to be the most favorable for maximum rate of hydrogen production. The distribution of soluble metabolic products (SMP) was also greatly affected by temperature. Considering glucose as a substrate, the activation energy (Ea) for hydrogen production was calculated as 81.01 kcal/mol and 21.4% of substrate energy was recovered in the form of hydrogen. The maximal hydrogen yield and the hydrogen production rate were obtained as 2.52 mol/mol-glucose and 39.0 ml/g-glucose h−1, respectively. These results indicate that C. beijerinckii Fanp3 is an ideal candidate for the fermentative hydrogen production. 相似文献
14.
A preliminary study on photoproduction of hydrogen by Rhodobacter capsulatus KU002 isolated from leather industry effluents under different cultural conditions with various carbon and nitrogen sources was investigated. Hydrogen production was measured using a Gas chromatograph. Lactate promoted more amounts of hydrogen production under anaerobic light conditions and aerobic light conditions. Cumulative hydrogen production by the organism was recorded at various time intervals. Incubation period of 120 h was optimum for production of hydrogen. pH 7.0 ± 0.2 was optimum for production of hydrogen by growing cells, while pH 7.5 ± 0.26 for resting cells. l-cystine was a good nitrogen source for production of hydrogen. Growing cells produced more amount of hydrogen than resting cells. Glutamine was a poor nitrogen source for hydrogen production by Rb. capsulatus. Significance of the above results in the presence of existing literature is discussed. 相似文献
15.
Xiaofeng Ye Xinyu Zhang Eberhard Morgenroth Kevin T. Finneran 《International Journal of Hydrogen Energy》2012
Fermentative hydrogen production is considered a reasonable alternative for generating H2 as an energy carrier for electricity production using hydrogen fuel cells. The kinetics of hydrogen production from glucose, xylose and cellobiose were investigated using pure culture Clostridium beijerinckii NCIMB 8052. Adding anthrahydroquinone-2,6-disulfonate (AH2QDS) at concentrations ranging from 100 μM to 500 μM increased the hydrogen production rates from 0.80 to 1.35 mmol/L-hr to 1.20–2.70 mmol/L-hr with glucose, xylose, or cellobiose as the primary substrates. AH2QDS amendment also increased the substrate utilization rate and biomass growth rate by at least two times. These findings suggest that adding hydroquinone reducing equivalents influence cellular metabolism with hydrogen production rate, substrate utilization rate, and growth rate being simultaneously affected. Resting cell suspensions were conducted to investigate the influence of AH2QDS on the hydrogen production rate from glyceraldehyde 3-phosphate, which is a shared intermediate in both glycolysis and pentose phosphate pathway. Data demonstrated that hydrogen production rate increased by 1.5 times when glyceraldehyde 3-phosphate was the sole carbon source, suggesting that the hydroquinone may alter reactions starting with or after glyceraldehyde 3-phosphate in central metabolism. These data demonstrate that adding hydroquinones increased overall metabolic activity of C. beijerinckii. This will eventually increase the efficiency of industrial scale production once appropriate hydroquinone equivalents are identified that work well in large-scale operations, since fermentation rate is one of the two critical factors (production rate and yield) influencing efficiency and cost. 相似文献
16.
Three bacteria, named L2, L3 and L4, were isolated from contaminated cultures of Chlamydomonas reinhardtii strain cc849 in laboratory. The phylogenetic analysis based on 16S rDNA sequences showed that L2, L3 and L4 belonged to genus Stenotrophomonas, Microbacterium and Pseudomonas, respectively. The co-cultivation of isolated L2, L3 and L4 with purified algae, respectively, demonstrated that moderate bacterial concentration did not affect algal growth significantly but improved algal H2 production obviously. The maximal H2 yields were gained by the co-culture of algae with L2 or L4, about 4.0 times higher than that of the single algal culture. Increased respiration rate or O2 consumption was the main reason for the enhancement of H2 yield of the co-cultures. 相似文献
17.
18.
Tam-Anh D. Nguyen Kyoung-Rok Kim Minh-Thu Nguyen Mi Sun Kim Donhue Kim Sang Jun Sim 《International Journal of Hydrogen Energy》2010
Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO2 and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H2) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H2 from algal starch with H2 yield of 1.8–2.2 mol H2/mol glucose and the total accumulated H2 level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H2 production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H2 fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 °C for 20 min showed the total accumulative H2 yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable α-amylase (Termamyl) applied in the SHF process significantly enhanced the H2 productivity of the bacterium to 64% (v/v) of total accumulated H2 level and a H2 yield of 2.5 mol H2/mol glucose. Our results demonstrated that direct H2 fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H2 production. 相似文献
19.
Klebsiella pneumoniae ECU-15 (EU360791), which was isolated from anaerobic sewage sludge, was investigated in this paper for its characteristics of fermentative hydrogen production. It was found that the anaerobic condition favored hydrogen production than that of the micro-aerobic condition. Culture temperature and pH of 37 °C and 6.0 were the most favorable for the hydrogen production. The strain could grow in several kinds of monosaccharide and disaccharide, as well as the complicated corn stalk hydrolysate, with the best results exhibited in glucose. The maximum hydrogen production rate and yield of 482 ml/l/h and 2.07 mol/mol glucose were obtained at initial glucose concentration of 30 g/L and 5 g/L, respectively. Fermentation results in the diluent corn stalk hydrolysate showed that cell growth was not inhibited. However, the hydrogen production of 0.65 V/V was relatively lower than that of the glucose (1.11 V/V), which was mainly due to the interaction between xylose and glucose. 相似文献
20.
Efficient H2 producing bacterial strain Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1 was isolated from the anaerobic digester. Taguchi design of experiment was applied to evaluate the influence of the temperature, pH, glucose, FeSO4 and yeast extract on H2 production with three levels of orthogonal array in the experimental design. Temperature showed most significant influence on the H2 production process. Investigation of mutual interaction between the process parameters was studied employing Box–Behnken design. Experimentally optimized process parameters (60 °C, pH 6.5, 20 mM FeSO4, 4 g L−1 yeast extract and 12 g L−1 glucose) gave the maximum H2 production of 3930 mL L−1 in 24 h, which have close resemblance with the theoretical values. Continuous H2 production using packed bed reactor was studied. Maximum H2 production rate of 1691 mL L−1 h−1 at a dilution rate of 0.6 h−1 was observed which is about 10 times higher than the batch process. 相似文献