首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur tolerance of Ni/Gd2O3–CeO2 (Ni/GDC) anodes promoted by impregnated palladium nanoparticles is investigated using the electrochemical impedance spectroscopy (EIS) and galvanostatic polarization techniques in the H2–H2S fuels at 800 °C. The anodes are alternately polarized in pure H2 and H2S-containing H2 fuels with H2S concentration gradually increased from 5 to 700 ppm at 200 mA cm−2. The degradation in performance for the hydrogen oxidation in H2S-containing H2 fuels especially at low H2S concentration is substantially smaller on Pd-impregnated Ni/GDC cermet anodes, as compared to that on pure Ni/GDC anodes. The potential of Pd-impregnated Ni/GDC electrodes measured in pure H2 decreases by 0.07 V after exposure to H2S-containing H2 fuels, substantially smaller than 0.13 V observed on pure Ni/GDC anodes under identical test conditions. The results show that Pd impregnation significantly enhances the sulfur tolerance of Ni/GDC cermet anodes particularly in the low H2S concentration range (e.g., <100 ppm). The results indicate that the enhanced sulfur tolerance of Pd impregnated Ni/GDC anodes is most likely due to the promotion effect of impregnated Pd nanoparticles on the hydrogen dissociation and diffusion processes. The reduced moderation of the morphology and microstructure of the anodes in the presence of Pd nanoparticles may be the result of weaker interaction or adsorption of sulfur on Ni and GDC phases.  相似文献   

2.
Solid oxide fuel cells (SOFC) can be operated with a variety of fuels. In anode-supported SOFC, these fuels may decompose or react catalytically in the anode compartment resulting in mixtures that, in most cases, include high concentrations of H2 and CO. In this study, the formation of carbon from CO and H2 mixtures on Ni/YSZ anodes at 1073 K has been investigated using electrochemical and carbon characterization techniques. More carbon is deposited when Ni/YSZ anodes are exposed to CO/H2 mixtures than to pure CO. Polarization of the anodes reduced the amount of carbon deposited but the extent of the reduction depended on the gas composition.  相似文献   

3.
The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24 h and for a few hundred hours. In a fuel containing significant shares of methane, the reforming activities of the Ni/YSZ and Ni/ScYSZ anodes were severely poisoned already at low H2S concentrations of ∼2 ppm H2S. The poisoning effect on the cell voltage was reversible only to a certain degree after exposure of 500 h in the state-of-the-art cell, due to a loss of percolation of Ni particles in the Ni/YSZ anode layers closest to the electrolyte. Using SOFCs with Ni/ScYSZ anodes improved the H2S tolerance considerably, even at larger H2S concentrations of 10 and 20 ppm over a few hundred hours.  相似文献   

4.
Restructuring of Ni in cermet anodes of solid oxide fuel cells (SOFCs) has been studied using both bulk fuel cells and thin foil anodes. The bulk cells were button cells (23 mm in diameter) with cermet anodes (30-70 μm thick) made up of nickel and gadolinium-doped ceria (Ni/CGO). The cells were operated (under current load) at 700 °C in moist H2 or moist H2 with low levels of H2S. Scanning electron microscopy (SEM) was used to characterize the microstructure before and after testing. The thin foil samples (100-150 nm thick) were cermets of nickel and yttria doped zirconia (Ni/YSZ) and these were exposed (without current load) at 700 °C to dry H2, moist H2 or moist H2 with H2S (1 ppm). Transmission electron microscopy (TEM) and SEM were used to analyze the microstructural changes in these samples. The anodes from the bulk cells exhibited terracing of Ni grains in all instances, with the extent of terracing increasing with exposure to H2S, and with increasing H2S levels and exposure time. The thin foil anodes showed much more extensive Ni restructuring leading to agglomeration and faceting of Ni grains. This was accompanied by debonding from YSZ, commencing at triple points, where some combination of three Ni/YSZ grains meet. The amount of restructuring increased with increasing H2 concentration in the gas, and was accelerated by the presence of H2S and/or H2O. Evidence is presented that indicates that terracing may represent the early stages of Ni agglomeration.  相似文献   

5.
Sintering of Ni particles in Ni infiltrated porous YSZ anodes and decrease in triple phase boundary is the reason for performance loss in SOFC. In the present work, the idea of strong metal support interaction (SMSI) has been used to prevent the sintering of Ni particles by introducing TiO2 as support with Ni catalyst. Electrical conductivity variation of porous YSZ matrix impregnated with Ni and Ni/TiO2 have been investigated. Single button cells (anode supported) with and without TiO2 impregnated Ni–YSZ anode were fabricated and characterized through current–voltage measurement at different loads. It is shown that the conductivity of porous Ni–YSZ anode and the performance of SOFC button cell with the same anode decreased with the increase in temperature and redox cycling at different time intervals. The power density of 12% Ni–YSZ anode was 116 mW/cm2 and it increased to 180 mW/cm2 for 12% Ni–4% TiO2–YSZ based anodes at 800 °C. This increase was interpreted by strong attachment of Ni particles on TiO2 preventing Ni coarsening during prolonged reduction in H2 at 800 °C as observed by SEM. The power density increased with further increase in Ni loading and it reached to 400 mW/cm2 for 16% Ni–4% TiO2–YSZ based anodes. The performance increases with addition of TiO2 support in Ni–YSZ based anodes corroborates with the impedance spectroscopy analyses.  相似文献   

6.
Ni–YSZ cermet anodes for solid oxide fuel cells (SOFCs) were fabricated at various sintering temperatures from NiO–YSZ composite particles made by spray pyrolysis (SP) technique. NiO particles covered with fine YSZ (Y2O3 stabilized ZrO2) particles were used as the composite particles, and the initial ratio of Ni and YSZ was set at 75:25 (mol%). As a result, the cermet anode sintered at 1350 °C showed the morphology in which fine YSZ grains were uniformly dispersed on the surface of Ni grain network. Electrical performance such as electrochemical activity and internal resistance of a Ni–YSZ cermet anode changed with sintering temperature. The anode fabricated at 1350 °C showed the highest electrical performance. Especially, a single cell voltage with the Ni–YSZ cermet anode kept very stable for 8000 h at 1000 °C in the SOFC operation condition of H2—3% H2O and air. The cermet anode after a long-term test had its initial morphology. It indicates that the Ni–YSZ cermet anode fabricated from NiO–YSZ composite particles is a very promising material for its practical use as SOFCs.  相似文献   

7.
《Journal of power sources》2006,162(2):1172-1181
A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd0.2Ce0.8O2) prepared using a simple combustion process within the pores of the anode for a solid oxide fuel cell (SOFC) running on methane fuel. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Then, the short-term stability for the cells with the Ni/ScSZ and 2.0 wt.%GDC-coated Ni/ScSZ anodes in 97%CH4/3%H2O at 700 °C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.098 to 1.179 V, and power densities increased from 224 to 848 mW cm−2, as the operating temperature of an SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified methane. The coating of nano-sized Gd0.2Ce0.8O2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cells. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Introduction of nano-sized GDC particles into the pores of porous Ni/ScSZ anode will result in a substantial increase in the ionic conductivity of the anode and increase the triple phase boundary region expanding the number of sites available for electrochemical activity. No significant degradation in performance has been observed after 84 h of cell testing when 2.0 wt.%GDC-coated Ni/ScSZ anode was exposed to 97%CH4/3%H2O at 700 °C. Very little carbon was detected on the anodes, suggesting that carbon deposition was limited during cell operation. Consequently, the GDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition.  相似文献   

8.
The electrochemical performance and carbon deposition on palladium catalyst promoted Ni/Gd0.1C0.9O1.95 (Ni/GDC) anode in methane and alcohol fuels like methanol and ethanol are investigated at open circuit potential and under dc bias using electrochemical impedance spectroscopy technique. Presence of Pd nanoparticle catalyst significantly promotes the electrocatalytic activity of Ni/GDC for the electrooxidation reaction in methane and in particularly in methanol and ethanol fuels. For instance, in the case of methanol oxidation reaction, there is clear separation of the impedance arcs at high and low frequencies and activation energy for the reaction is reduced by ∼33% on a 0.15 mg cm−2 PdO impregnated or infiltrated Ni/GDC anode. The transitional impedance response study when the inlet gas is switched from hydrogen to methane or alcohol fuels indicates that the oxidation reaction in methane and alcohol fuels is most likely dominated by adsorption, dissociation and diffusion steps of the reaction. Carbon deposition is also observed on Pd-infiltrated Ni/GDC in methanol and ethanol, but different from that observed in methane, there is no filament carbon fibers formation on the Pd-impregnated Ni/GDC surface in methanol fuel.  相似文献   

9.
《Journal of power sources》2006,162(2):1036-1042
To protect the ceria electrolyte from reduction at the anode side, a thin film of yttria-stabilized zirconia (YSZ) is introduced as an electronic blocking layer to anode-supported gadolinia-doped ceria (GDC) electrolyte solid oxide fuel cells (SOFCs). Thin films of YSZ/GDC bilayer electrolyte are deposited onto anode substrates using a simple and cost-effective wet ceramic co-sintering process. A single cell, consisting of a YSZ (∼3 μm)/GDC (∼7 μm) bilayer electrolyte, a La0.8Sr0.2Co0.2Fe0.8O3–GDC composite cathode and a Ni–YSZ cermet anode is tested in humidified hydrogen and air. The cell exhibited an open-circuit voltage (OCV) of 1.05 V at 800 °C, compared with 0.59 V for a single cell with a 10-μm GDC film but without a YSZ film. This indicates that the electronic conduction through the GDC electrolyte is successfully blocked by the deposited YSZ film. In spite of the desirable OCVs, the present YSZ/GDC bilayer electrolyte cell achieved a relatively low peak power density of 678 mW cm−2 at 800 °C. This is attributed to severe mass transport limitations in the thick and low-porosity anode substrate at high current densities.  相似文献   

10.
The high potential of solid oxide fuel cells (SOFC) arises due to the high degree of efficiency and fuel flexibility. However, the elementary kinetic steps of the anodic processes taking place at the boundary of electrolyte-anode-gas are still largely unknown. Patterned Ni anodes on Y2O3-stabilized ZrO2 are regarded as a promising method to determine these kinetics.In analogy to our previous study with patterned Ni anodes for the H2-H2O system, this study is systematically devoted to the elementary kinetics of the CO electrochemical oxidation in CO-CO2 gas mixtures. Data analysis is backed by extensive knowledge on patterned anode stability and dynamics gained during previous studies. The electrochemical characterization is performed for a large parameter variation range (pCO2, pCO and T) by electrochemical impedance spectroscopy.Contrary to the characterization in H2-H2O atmosphere no slow relaxation processes were observed and the degradation rate is smaller. Changes in parameter dependency over the investigated parameter range indicate different reaction mechanisms as a function of gas composition. Only slightly higher polarization losses are observed for CO oxidation compared to H2. The comparison of the results from patterned anodes to high-performance Ni/8YSZ cermet anodes employed in anode supported cells yields good agreement.  相似文献   

11.
In this study the fabrication and characterization of Ni/10ScSZ (Ni/10 mol% Sc2O3-90 mol% ZrO2) and Ni/10Sc1CeSZ (Ni/10 mol% Sc2O3-1 mol% CeO2-89 mol% ZrO2) cermet anode films was studied and compared. Both 10ScSZ and 10Sc1CeSZ electrolyte powders showed tetragonal and cubic phases at room temperature, respectively. The NiO/10ScSZ and NiO/10Sc1CeSZ composites with 10-60 vol% of Ni content were prepared by mixing as-received commercial powders of NiO, 10ScSZ and 10Sc1CeSZ followed by ink preparation. Samples were sintered for 1 h at temperatures of 1250-1350 °C. All the cermet films were then reduced under a mixture of hydrogen (10%) and nitrogen (90%) at 800 °C for 2 h. The effect of Ni content and sinter temperature on the DC electrical conductivity were investigated, and the results showed a sharp change in conductivity at around 30 vol% Ni, corresponding to continuity/discontinuity of the Ni-Ni contact network, and the conductivity increased as the sinter temperature increased from 1250 to 1350 °C. An acceptable electrical conductivity at 700 °C for these cermet films was obtained at >40 vol% Ni, consistent with behaviour reported for more conventional Ni/YSZ cermets. The effect of sinter temperature on the microstructure and porosity of Ni/10Sc1CeSZ and Ni/10ScSZ cermet films was also investigated. This revealed that the porosity of the cermet films with the same Ni content decreased as the sinter temperature increased and that, for a given sinter temperature, the porosity of the cermet films increased with Ni content. The porosities of 40Ni/60ScCeSZ (40 vol% Ni/60 vol% 10Sc1CeSZ) and 40Ni/60ScSZ (40 vol% Ni/60 vol% 10ScSZ) anodes sintered at 1250, 1300 and 1350 °C for 1 h were in the range of 30-45%. Electrochemical measurement of symmetrical cells using an 8YSZ electrolyte at 700 °C revealed that the lowest electrode polarization resistance of 40Ni/60ScCeSZ and 40Ni/60ScSZ anodes was obtained at sinter temperatures of 1350 °C and 1300 °C respectively. Carbon deposition over 40Ni/60ScCeSZ, 40Ni/60ScSZ and 40Ni/60YSZ catalysts was evaluated at 700 °C for 1 h at S/C = 0.8 and the results showed that the ratio of deposited carbon was lower in the case of Ni/10ScSZ and Ni/10Sc1CeSZ compared to Ni/YSZ (0.35). Overall, Ni/10Sc1CeSZ and Ni/10ScSZ cermets having 40 vol% Ni were found to be optimum, with the 40Ni/60ScCeSZ cermet proving to be better than 40Ni/60ScSZ cermet in terms of both electronic conductivity and electrode polarization resistance, with both materials exhibiting improved tolerance towards carbon deposition compared to Ni/YSZ.  相似文献   

12.
In this paper, Ni/YSZ and Ni–CeO2/YSZ anodes for a solid oxide fuel cell (SOFC) were prepared by tape casting and vacuum impregnation. By this method, the Ni content in the anode could be reduced compared to the traditional tape casting method. It was found that adding CeO2 into the Ni/YSZ anode by a Ni(NO3)2 and Ce(NO3)3 mixed impregnation could further enhance cell performance. This was investigated in H2 at 1073 K. XRD patterns indicated that CeO2 and Ni were separate phases, and the CeO2 addition could enhance the Ni dispersion on the YSZ framework surface which was observed by SEM images. It was shown that adding CeO2 into the Ni anodes could decrease the cell polarization resistance. The maximum power density for cells with 25 wt.% Ni, 5 wt.% CeO2–25 wt.% Ni/YSZ, or 10 wt.% CeO2–25 wt.% Ni/YSZ anode was 230 mW cm−2, 420 mW cm−2 and 530 mW cm−2, respectively, in H2 at 1073 K. The OCV for these cells was 1.05–1.09 V, indicating that a dense electrolyte film was obtained by co-firing porous YSZ layer and dense YSZ layer.  相似文献   

13.
High-entropy alloy (HEA) anode and reforming catalyst, supported on gadolinium-doped ceria (GDC), have been synthesized and evaluated for the steam reforming of methane under SOFC operating conditions using a conventional fixed-bed catalytic reactor. As-synthesized HEA catalysts were subjected to various characterization techniques including N2 adsorption/desorption analysis, SEM, XRD, TPR, TPO and TPD. The catalytic performance was evaluated in a quartz tube reactor over a temperature range of 700–800 °C, pressure of 1 atm, gas hourly space velocity (GHSV) of 45,000 h?1 and steam-to-carbon (S/C) ratio of 2. The conversion and H2 yield were calculated and compared. HEA/GDC exhibited a lower conversion rate than those of Ni/YSZ and Ni/GDC at 700 °C, but showed superior stability without any sign of carbon deposition unlike Ni base catalyst. HEA/GDC was further evaluated as an anode in a SOFC test, which showed high electrochemical stability with a comparable current density obtained on Ni electrode. The SOFC reported low and stable electrode polarization. Post-test analysis of the cell showed the absence of carbon at and within the electrode. It is suggested that HEA/GDC exhibits inherent robustness, good carbon tolerance and stable catalytic activity,` which makes it a potential anode candidate for direct utilization of hydrocarbon fuels in SOFC applications.  相似文献   

14.
Thin and porous anodes need three important properties, high porosity, moderate catalytic ability, and no carbon deposition, when using hydrocarbon fuels for the operation of solid oxide fuel cells (SOFCs). Nickel-based (Ni/YSZ) cermets might perform serious carbon deposition using hydrocarbon fuels. Instead, many researches select Cu-based cermets to extend the application period. This study chose half replaced cermet (50%Cu–Ni in Y-doped ZrO2), and verified the effects of H2 formation and carbon deposition comparing to other two series, i.e. Ni-YSZ and Cu-YSZ. Three ingredients were homogeneously mixed and reduced, then sintered to the porosity of 54 ± 3%. The re-dox properties under various atmospheres and the permeability of made cermets have been investigated. The results showed that 50%Cu–Ni with 8YSZ performed moderate catalytic ability, low cracking rate for CH4, and good electric conductivity of 1503 S cm−1 at 650 °C. The sample is suitable for using CH4 fuel for SOFCs.  相似文献   

15.
The Cu–Ni–YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into a porous Ni–YSZ cermet anode. The uniform distribution of Cu in the Ni–YSZ anode was obtained by electroplating in an aqueous solution mixture of CuSO4·5H2O and H2SO4 for 30 min with 0.1 A of applied current. When the Cu–Ni–YSZ anode was exposed to methane at 700 °C, the amount of carbon deposited on the anode decreased as the amount of Cu in the Cu–Ni solid solution increased. The power density (0.24 W/cm2) of a single cell with a Cu–Ni–YSZ anode was slightly lower in methane at 700 °C than the power density (0.28 W/cm2) of a single cell with a Ni–YSZ anode. However, the performance of the Ni–YSZ anode-supported single cell degraded steeply over 21 h because of carbon deposition, whereas the Cu–Ni–YSZ anode-supported single cell showed enhanced durability up to 200 h.  相似文献   

16.
Anode supported (Ni/YSZ-YSZ-LSM/YSZ) solid oxide fuel cells were tested and the degradation over hundreds of hours was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the Ni/YSZ anode degradation and all tests were operated at 750 °C, a current density of 0.75 A cm−2. Oxygen was supplied to the cathode and the anode inlet gas mixture had a high p(H2O)/p(H2) ratio of 0.4/0.6. Commercially available gasses were applied. The effect of different types of pre-treatments on the Ni/YSZ electrode degradation during subsequent fuel cell testing was investigated. Pre-treatments included operating at OCV (4% and 40% H2O in H2) prior to fuel cell testing, cleaning of the inlet H2 gas at 700 °C and processing the anode half cell via multilayer tape casting. Analyses of impedance spectra showed that the increase in the charge transfer reaction resistance in the Ni/YSZ (RNi,TPB) was decreased to ¼ or less for the pre-treated and fuel cell tested cells when compared with a non-pre-treated reference tested cell; all operated at the same fuel cell test conditions. Scanning electron microscopy and image analyses for the non-pre-treated reference tested cell and selected pre-treated cells showed significant differences in the area fractions of percolating nickel both in the active anode and support layer.  相似文献   

17.
Some of the limits on fuel cell development include the issues of hydrogen availability and storage. Methanol has many advantages as an alternative fuel for fuel cells but depending on the anode composition, the formation of carbon may be a problem. In this paper, the direct utilization of methanol in solid oxide fuel cells with impregnated Ni/YSZ and Ni-Zr0.35Ce0.65O2−δ (ZDC)/YSZ anodes was investigated at 1073 K. Performance and stability of these anodes, as measured by steady-state polarization and electrochemical impedance spectroscopy, were improved by the presence of ZDC; although, the deposition of carbon, as detected by scanning electron microscopy and temperature-programmed oxidation analysis, was not entirely avoided. The impact of the carbon, however, was different depending on the anode. That is, carbon formation caused the delamination of impregnated Ni/YSZ anodes, while the structural integrity of Ni-ZDC/YSZ anodes was maintained and the cell performance was not negatively impacted. Increasing the fuel utilization decreased coking, as predicted by equilibrium calculations.  相似文献   

18.
Ni alloys are examined as redox-resistant alternatives to pure Ni for solid oxide fuel cell (SOFC) anodes. Among the various candidate alloys, Ni–Co alloys are selected due to their thermochemical stability in the SOFC anode environment. Ni–Co alloy cermet anodes are prepared by ammonia co-precipitation, and their electrochemical performance and microstructure are evaluated. Ni–Co alloy anodes exhibit high durability against redox cycling, whilst the current-voltage characteristics are comparable to those of pure Ni cermet anodes. Microstructural observation reveals that cobalt-rich oxide layers on the outer surface of the Ni–Co alloy particles protect against further oxidation within the Ni alloy. In long-term durability tests using highly humidified hydrogen gas, the use of a Ni–Co cermet with Gd-doped CeO2 suppresses degradation of the power generation performance. It is concluded that Ni–Co alloy cermet anodes are highly attractive for the development of robust SOFCs.  相似文献   

19.
Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H2, H2O, CO, and CO2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h−1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH3. XRD analysis suggested that Ni5P2 and P2O5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.  相似文献   

20.
Solid oxide fuel cells (SOFC) were fabricated with gadolinia-doped ceria (GDC)-yttria stabilized zirconia (YSZ), thin bi-layer electrolytes supported on Ni + YSZ anodes. The GDC and YSZ layer thicknesses were 45 μm, and ∼5 μm, respectively. Two types of cells were made; YSZ layer between anode and GDC (GDC/YSZ) and YSZ layer between cathode and GDC (YSZ/GDC). Two platinum reference electrodes were embedded within the GDC layer. Cells were tested at 650 °C with hydrogen as fuel and air as oxidant. Electric potentials between embedded reference electrodes and anode and between cathode and anode were measured at open circuit, short circuit and under load. The electric potential was nearly constant through GDC in the cathode/YSZ/GDC/anode cells. By contrast, it varied monotonically through GDC in the cathode/GDC/YSZ/anode cells. Estimates of oxygen chemical potential, μO2, variation through GDC were made. μO2 within the GDC layer in the cathode/GDC/YSZ/anode cell decreased as the current was increased. By contrast, μO2 within the GDC layer in the cathode/YSZ/GDC/anode cell increased as the current was increased. The cathode/YSZ/GDC/anode cell exhibited maximum power density of ∼0.52 W cm−2 at 650 °C while the cathode/GDC/YSZ/anode cell exhibited maximum power density of ∼0.14 W cm−2 for the same total electrolyte thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号