首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system.  相似文献   

2.
Complex hydrides and Metal–N–H-based materials have attracted considerable attention due to their high hydrogen content. In this paper, a novel amide–hydride combined system was prepared by ball milling a mixture of Na2LiAlH6–Mg(NH2)2 in a molar ratio of 1:1.5. The hydrogen storage performances of the Na2LiAlH6–1.5Mg(NH2)2 system were systematically investigated by a series of dehydrogenation/hydrogenation evaluation and structural analyses. It was found that a total of ∼5.08 wt% of hydrogen, equivalent to 8.65 moles of H atoms, was desorbed from the Na2LiAlH6–1.5Mg(NH2)2 combined system. In-depth investigations revealed that the variable milling treatments resulted in the different dehydrogenation reaction pathways due to the combination of Al and N caused by the energetic milling. Hydrogen uptake experiment indicated that only ∼4 moles of H atoms could be reversibly stored in the Na2LiAlH6–1.5Mg(NH2)2 system perhaps due to the formation of AlN and Mg3N2 after dehydrogenation.  相似文献   

3.
The binary phase diagram NaBO2–H2O at ambient pressure, which defines the different phase equilibria that could be formed between borates, end-products of NaBH4 hydrolysis, has been reviewed. Five different solid borates phases have been identified: NaBO2·4H2O (Na[B(OH)4]·2H2O), NaBO2·2H2O (Na[B(OH)4]), NaBO2·2/3H2O (Na3[B3O4(OH)4]), NaBO2·1/3H2O (Na3[B3O5(OH)2]) and NaBO2 (Na3[B3O6]), and their thermal stabilities have been studied. The boundaries of the different Liquid + Solid equilibria for the temperature range from −10 to 80 °C have been determined, confirming literature data at low temperature (20–50 °C). Moreover the following eutectic transformation, Liq. → Ice + NaBO2·4H2O, occurring at −7 °C, has been determined by DSC. The Liquid–Vapour domain has been studied by ebullioscopy. The invariant transformation Liq.  Vap. + NaBO2·2/3H2O has been estimated at 131.6 °C. This knowledge is paramount in the field of hydrogen storage through NaBH4 hydrolysis, in which borate compounds were obtained as hydrolysis reaction products. As a consequence, the authors propose a comparison with previous NaBO2–H2O binary phase diagrams and its consequence related to hydrogen storage through NaBH4 hydrolysis.  相似文献   

4.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

5.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

6.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

7.
8.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

9.
Experiments were performed to add hydrogen to liquefied petroleum gas (LPG) and methane (CH4) to compare the emission and impingement heat transfer behaviors of the resultant LPG–H2–air and CH4–H2–air flames. Results show that as the mole fraction of hydrogen in the fuel mixture was increased from 0% to 50% at equivalence ratio of 1 and Reynolds number of 1500 for both flames, there is an increase in the laminar burning speed, flame temperature and NOx emission as well as a decrease in the CO emission. Also, as a result of the hydrogen addition and increased flame temperature, impingement heat transfer is enhanced. Comparison shows a more significant change in the laminar burning speed, temperature and CO/NOx emissions in the CH4 flames, indicating a stronger effect of hydrogen addition on a lighter hydrocarbon fuel. Comparison also shows that the CH4 flame at α = 0% has even better heat transfer than the LPG flame at α = 50%, because the longer CH4 flame configures a wider wall jet layer, which significantly increases the integrated heat transfer rate.  相似文献   

10.
Production of syngas via autothermal reforming of methane (MATR) in a fluidized bed reactor was investigated over a series of combined CeO2–ZrO2/SiO2 supported Ni catalysts. These combined CeO2–ZrO2/SiO2 supports and supported Ni catalysts were characterized by nitrogen adsorption, XRD, NH3-TPD, CO2-TPD and H2-TPR. It was found that the combined supports integrated the advantages of SiO2 and CeO2, ZrO2. That is, they have bigger surface area (about 300 m2/g) than pure CeO2 and ZrO2, stronger acidity and alkalescence than that of pure SiO2, and enhanced the mobility of H adatoms. Ni species dispersed highly on these combined CeO2–ZrO2/SiO2 supports, and became more reducible. Ni catalysts on the combined supports possess higher CO2 adsorption ability, higher methane activation ability and exhibited higher activity for MATR. H2/CO ratio in product gas could be controlled successfully in the range of 0.99–2.21 by manipulating the relative concentrations of CO2 and O2 in feed.  相似文献   

11.
Single-walled carbon nanotubes (SWNTs) were mechanically milled with LiBH4/MgH2 mixture, and examined with respect to its effect on the reversible dehydrogenation properties of the Li–Mg–B–H system. Experimental results show that the addition of SWNTs results in an enhanced dehydriding rate and improved cyclic stability of the LiBH4/MgH2 composite. For example, the LiBH4/MgH2 composite with 10 wt% purified SWNTs additive can release nearly 10 wt% hydrogen within 20 min at 450 °C, with an average dehydriding rate over 2 times faster than that of the neat LiBH4/MgH2 sample. Based on the results of phase analysis and a series of designed experiments, the mechanism underlying the observed property improvement was discussed.  相似文献   

12.
This study has been implemented in two sections. At first, the turbulent jet flame of DLR-B is simulated by combining the kε turbulence model and a steady flamelet approach. The DLR-B flame under consideration has been experimentally investigated by Meier et al. who obtained velocity and scalar statistics. The fuel jet composition is 33.2% H2, 22.1% CH4 and 44.7% N2 by volume. The jet exit velocity is 63.2 m/s resulting in a Reynolds number of 22,800. Our focus in the first part is to validate the developed numerical code. Comparison with experiments showed good agreement for temperature and species distribution. At the second part, we exchanged methane with propane in the fuel composition whilst maintaining all other operating conditions unchanged. We investigated the effect of hydrogen concentration on C3H8–H2–N2 mixtures so that propane mole fraction extent is fixed. The hydrogen volume concentration rose from 33.2% up to 73.2%. The achieved consequences revealed that hydrogen addition produces elongated flame with increased levels of radiative heat flux and CO pollutant emission. The latter behavior might be due to quenching of CO oxidation process in the light of excessive cold air downstream of reaction zone.  相似文献   

13.
The effect of MgFe2O4 on the hydrogen storage properties of the composite Na3AlH64LiBH4 was studied for the first time, where it was found that MgFe2O4 addition decreased the onset desorption temperature of Na3AlH64LiBH4. Hydrogen (~9.5 wt%) was released in three stages and the dehydrogenation temperatures were reduced to 80 °C, 350 °C, and 430 °C for the first, second, and third stage, respectively. The absorption kinetics of Na3AlH64LiBH4 was also significantly improved due to the catalytic effect of MgFe2O4. Using Kissinger analysis, the apparent activation energies of decomposition of the Li3AlH6 and NaBH4 stages in Na3AlH64LiBH4-10 wt% MgFe2O4 were calculated to be 72 and 141 kJ/mol, respectively. These values were considerably lower than the corresponding values for the undoped composite. X-ray diffraction analysis revealed the formation of new products such as MgO and Fe during the heating process. Our results suggest that MgFe2O4 enhanced the hydrogen storage properties of Na3AlH64LiBH4 through the formation of active species, such as MgO and Fe.  相似文献   

14.
Ignition delay times of H2/O2 mixtures highly diluted with Ar and doped with various amounts of N2O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940–1675 K). The pressure range investigated during this work (around 1.6, 13 and 32 atm) allows studying the effect of N2O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N2O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 32 atm. When it occurred, the decrease in the ignition delay time was proportional to the amount of N2O added and depended on pressure and temperature conditions. A detailed chemical kinetics model was developed using kinetic mechanisms from the literature. This model predicts well the experimental data obtained during this study and from the literature. The chemical analysis using this model showed that the decrease in the ignition delay time was mainly due to the reaction N2O + M ? N2 + O + M which provides O atoms to strengthen the channel O + H2 ? OH + H.  相似文献   

15.
The laminar burning velocities of H2–air mixtures diluted with N2 or CO2 gas at high temperatures were obtained from planar flames observed in externally heated diverging channels. Experiments were conducted for an equivalence ratio range of 0.8–1.3 and temperature range of 350–600 K with various dilution rates. In addition, computational predictions for burning velocities and their comparison with experimental results and detailed flame structures have been presented. Sensitivity analysis was carried out to identify important reactions and their contribution to the laminar burning velocity. The computational predictions are in reasonably good agreement with the present experimental data (especially for N2 dilution case). The burning velocity maxima was observed for slightly rich mixtures and this maxima was found to shift to higher equivalence ratios (Ф) with a decrease in the dilution. The effect of CO2 dilution was more profound than N2 dilution in reducing the burning velocity of mixtures at higher temperatures.  相似文献   

16.
The present investigation describes the hydrogen storage properties of 2:1 molar ratio of MgH2–NaAlH4 composite. De/rehydrogenation study reveals that MgH2–NaAlH4 composite offers beneficial hydrogen storage characteristics as compared to pristine NaAlH4 and MgH2. To investigate the effect of carbon nanostructures (CNS) on the de/rehydrogenation behavior of MgH2–NaAlH4 composite, we have employed 2 wt.% CNS namely, single wall carbon nanotubes (SWCNT) and graphene nano sheets (GNS). It is found that the hydrogen storage behavior of composite gets improved by the addition of 2 wt.% CNS. In particular, catalytic effect of GNS + SWCNT improves the hydrogen storage behavior and cyclability of the composite. De/rehydrogenation experiments performed up to six cycles show loss of 1.50 wt.% and 0.84 wt.% hydrogen capacity in MgH2–NaAlH4 catalyzed with 2 wt.% SWCNT and 2 wt.% GNS respectively. On the other hand, the loss of hydrogen capacity after six rehydrogenation cycles in GNS + SWCNT (1.5 + 0.5) wt.% catalyzed MgH2–NaAlH4 is diminished to 0.45 wt.%.  相似文献   

17.
The present work is devoted to the study of non-premixed turbulent combustion with the PDF approach using three turbulence models: k-? model, modified k-? model and RSM model. A detailed kinetic mechanism is used in the numerical simulations. The three turbulence models are compared and evaluated with the experimental data and the numerical results of the literature. The evaluation concludes that the modified k-? is the most appropriate for simulating this kind of flame. A study of the effect of hydrogen addition on methane combustion is performed. Hydrogen addition causes the elevation of combustion temperature, the decreasing of CO and CO2 mass fractions but leads to the increase of NO mass fraction.  相似文献   

18.
An Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode material was prepared through electrochemical oxidation co-deposition on an Al/conductive coating/α-PbO2–CeO2–TiO2 substrate. The effects of manganese nitrate concentration on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated using energy dispersive X-ray spectroscopy, anode polarization curves, quasi-stationary polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction. Results revealed that the WC and nano-ZrO2 content in the β-PbO2–MnO2–WC–ZrO2 composite coatings increased with increasing manganese nitrate concentration. Moreover, the highest values of 6.61 wt% and 3.51 wt%, respectively, were achieved at 80 g L−1 manganese nitrate. PbO2 content decreased and MnO2 content increased with the increasing manganese nitrate concentration; both the descending and ascending trends were nonlinear. The Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode obtained at 80 g L−1 manganese nitrate concentration in plating solution exhibited reduced overpotential for oxygen evolution (0.610 V at 500 A m−2), highest electrocatalytic activity, longest service life (360 h at 40 °C in 150 g L−1 H2SO4 solution at 2 A cm−2), and lowest cell voltage (2.75 V at 500 A m−2). Furthermore, the composite coating obtained with 80 g L−1 manganese nitrate had uniform crystal grains. The deposit formed was flat, dense, and crackless.  相似文献   

19.
Hydrogen storage properties and mechanisms of the combined Mg(BH4)2–NaAlH4 system were investigated systematically. It was found that during ball milling, the Mg(BH4)2–xNaAlH4 combination converted readily to the mixture of NaBH4 and Mg(AlH4)2 with a metathesis reaction. The post-milled samples exhibited an apparent discrepancy in the hydrogen desorption behavior with respect to the pristine Mg(BH4)2 and NaAlH4. Approximately 9.1 wt% of hydrogen was released from the Mg(BH4)2–2NaAlH4 composite milled for 24 h with an onset temperature of 101 °C, which is lowered by 105 and 139 °C than that of NaAlH4 and Mg(BH4)2, respectively. At initial heating stage, Mg(AlH4)2 decomposed first to produce MgH2 and Al with hydrogen release. Further elevating operation temperatures gave rise to the reaction between MgH2 and Al and the self-decomposition of MgH2 to release more hydrogen and form the Al0.9Mg0.1 solid solution and Mg. Finally, NaBH4 reacted with Mg and partial Al0.9Mg0.1 to liberate all of hydrogen and yield the resultant products of MgAlB4, Al3Mg2 and Na. The dehydrogenated sample could take up ∼6.5 wt% of hydrogen at 400 °C and 100 atm of hydrogen pressure through a more complicated reaction process. The hydrogenated products consisted of NaBH4, MgH2 and Al, indicating that the presence of Mg(AlH4)2 is significantly favorable for reversible hydrogen storage in NaBH4 at moderate temperature and hydrogen pressure.  相似文献   

20.
The aim of the article was to compare the pre- and post-combustion CO2 capture process employing the chemical absorption technology. The integration of the chemical absorption process before or after the coal combustion has an impact on the power plant efficiency because, in both cases, the thermal energy consumption for solvent regeneration is provided by the steam extracted from the low pressure steam turbine. The solvent used in this study for the CO2 capture was monoethanolamine (MEA) with a weight concentration of 30%. In the case of the pre-combustion integration, the coal gasification was analysed for different ratios air/fuel (A/F) in order to determine its influences on the syngas composition and consequently on the low heating value (LHV). The LHV maximum value (28 MJ/kg) was obtained for an A/F ratio of 0.5 kgair/kgfuel, for which the carbon dioxide concentration in the syngas was the highest (17.26%). But, considering the carbon dioxide capture, the useful energy (the difference between the thermal energy available with the syngas fuel and the thermal energy required for solvent regeneration) was minimal. The maximum value (61.59 MJ) for the useful energy was obtained for an A/F ratio of 4 kgair/kgfuel. Also, in both cases, the chemical absorption pre- and post-combustion process, the power plant efficiency decreases with the growth of the L/G ratio. In the case of the pre-combustion process, considering the CO2 capture efficiency of 90%, the L/G ratio obtained was of 2.55 molsolvent/molsyngas and the heat required for the solvent regeneration was of 2.18 GJ/tCO2. In the case of the post-combustion CO2 capture, for the same value of the CO2 capture efficiency, the L/G ratio obtained was of 1.13 molsolvent/molflue gas and the heat required was of 2.80 GJ/tCO2. However, the integration of the CO2 capture process in the power plant leads to reducing the global efficiency to 30% in the pre-combustion case and to 38% to the post-combustion case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号