首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents the development of a thermally enhanced frame wall that reduces peak air conditioning demand in residential buildings. A frame wall that integrates a highly crystalline paraffin phase‐change material (PCM), via macro‐encapsulation, was developed, constructed, and evaluated. This prototype wall is referred to as phase‐change frame wall (PCFW). Results from field testing show that the PCFW reduced wall peak heat fluxes by as much as 38%. For a period of several days that included walls facing different directions, the average wall peak heat flux reduction was approximately 15% when PCFWs with a 10% concentration of PCM (based on indoor sheathing weight) were used and approximately 9% when a 20% PCM concentration was used. The average space‐cooling load was reduced by approximately 8.6% when 10% PCM was applied and 10.8% when 20% PCM was used. The level of insulation in the PCFWs that were tested was 1.94m2K/W (R‐11). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the design of a helmet cooling system using phase change material (PCM) to absorb and to store the heat produced by the wearer head so as to achieve comfort cooling for the wearer. The PCM is packed into a pouch and placed between the helmet and the wearer head. The heat from the wearer head is transferred to the PCM by conduction through a heat collector which is spread over the wearer head. No electrical power supply is needed for the cooling system. The temperature on the wearer head is maintained just above the PCM temperature, thus the wearer would not suffer from an uncomfortable and dangerous hot environment on the head which will affect the wearer alertness. The cooling unit is able to provide comfort cooling up to 2 h when the PCM is completely melted. The stored heat from the PCM pouch would then have to be discharged by immersing in water for about 15 min to solidify the PCM before re-use. The PCM helmet cooling system is simple and has potential to be implemented as a practical solution to provide comfort cooling to the motorcycle riders.  相似文献   

3.
The performance optimization of an endoreversible air refrigerator with variable‐temperature heat reservoirs is carried out by taking the cooling load density, i.e. the ratio of cooling load density to the maximum specific volume in the cycle, as the optimization objective in this paper. The analytical relations of cooling load, cooling load density and coefficient of performance are derived with the heat resistance losses in the hot‐ and cold‐side heat exchangers. The maximum cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, the optimum distribution of heat conductance of the hot‐ and cold‐side heat exchangers for the fixed total heat exchanger inventory, and the heat capacity rate matching between the working fluid and the heat reservoirs. The influences of some design parameters, including the heat capacitance rate of the working fluid, the inlet temperature ratio of heat reservoirs and the total heat exchanger inventory on the maximum cooling load density, the optimum heat conductance distribution, the optimum pressure ratio and the heat capacity rate matching between the working fluid and the heat reservoirs are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander and the hot‐ and cold‐side heat exchangers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Full scale thermal storage tests were conducted in a room lined with PCM wallboard having latent heat storage capacity. The results were compared with those obtained from tests conducted in a similar room lined with ordinary wallboard. The research showed that PCM wallboard can function efficiently as a thermal storage medium which can be applied to peak load shifting, improved use of waste and solar heat as well as more efficient operation of heating and cooling equipment.  相似文献   

5.
A parametric analysis is conducted for space cooling systems based on cold water flowing, during the night, within regularly arranged pipes embedded in a layer of phase change material (PCM), located among the structural layers of the ceiling. The introduced PCM layer in conjunction with night cooling add to the usual ceiling cooling systems offers the advantages of low energy consumption, high cool storage capacity, operation under reduced night electricity price, smoothing of electricity consumption by eliminating daily peak loads, improved thermal comfort and elimination of ceiling dripping. Our parametric analysis is based on a transient three‐dimensional finite‐difference solution of the related heat‐transfer problem for various values of all the main system parameters. PCM phase change process is simulated by using the effective thermal capacity function, which is determined experimentally for PCM suitable for air‐conditioning applications. Our tests showed that the main parameters of the system are pipe spacing, PCM layer thickness, pipe depth within the ceiling, cooling water inlet temperature, night cooling duration and PCM properties (thermal conductivity, phase change heat and ends of phase change temperature range). The effect of all the above parameters is analysed and suggestions are made for selecting the proper combinations of their values in order to obtain the lowest energy consumption in conjunction with the highest level of thermal comfort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The use of a phase-change material (PCM) in a district cooling system was studied in order to increase the heat transfer performance of the system. One of the major technical obstacles to its use is the clogging of the piping system. The present study attemps to minimize the clogging problem by using an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane (a PCM) were studied. A small amount (60 to 2,775 ppm) of emulsifier caused remarkable effects resulting in the production of fine PCM particles. As the amount of the emulsifier was increased in the 25% hexadecane mixture with water, the size of the solid particles of hexadecane became smaller. When the size of the hexadecane particles was small enough, they did not stick together or stick to the surface of the cold wall of a heat exchanger.  相似文献   

7.
A novel micro CCHP system, which is based on a two bed silica gel–water adsorption chiller, is constructed in this work. To reveal the chiller characteristic in this system, a transient model of the adsorption chiller is developed. According to the comparison of the simulated results and experimental data, the presented model shows a good performance in predicting the chiller performance, with both stable and variable heat source temperature. With the analysis of simulated results, it is found that the cooling capacity and the coefficient of performance (COP) of the chiller are influenced significantly by the average value and variation rate of electric load, as well as the average value of cooling load. The water tank also shows a great effect on the chiller performance. To get better performance of the chiller, the water tank should be adopted when the electric load is low or its variation rate is positive, and should not be utilized when the electric load is high or its variation rate is negative. A 500 L water tank is recommended in order to get better performance and acceptable start-up time. Furthermore, to get better performance as well as higher security, a cold accumulator should be adopted.  相似文献   

8.
When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.  相似文献   

9.
Jianping Tu  Wei Shih  Henry Mak 《传热工程》2017,38(17):1429-1438
A concept of using energy storage material (ESM) or phase change material (PCM) to enhance the heat transfer dissipation by a conventional compact fin-based heat sink is demonstrated. An actual design is developed, fabricated, and tested to demonstrate the heat transfer enhancement. The heat sink is light weight (made with Aluminum) and miniature in size with a total fin length of 26 mm. Test results demonstrated that under a high peak load (4.4 W/cm2) and low duty power cycle (30/55 on/off ratio with a period of 85 sec), the peak temperature at the heating surface with the ESM/PCM heat sink is 5°C lower than that of a conventional heat sink. At the tip of the fin, the peak temperature with the ESM/PCM heat sink is 3°C lower than that of a conventional heat sink. When the external heat transfer coefficient increases (with increase air velocity), the impact of the PCM/ESM on the heat transfer performance is less. A numerical model, based on COMSOL, is developed to provide a theoretical understanding of the experimental observation.  相似文献   

10.
This study involves the mathematical modelling and experimental verification of a heat exchanger accumulator. The study was initiated with a literature survey which, according to the authors, revealed that there was no published material that described how heat exchanger accumulators are designed to ensure that they are correctly sized according to the operating system and conditions. The heat exchange process that takes place within the heat accumulator was studied and a mathematical model of a heat exchanger accumulator developed. This model was used to develop a universal design procedure that correctly sized the heat exchanger accumulator according to the operating system into which it was to be installed. The model was then verified by conducting experimental tests and it was concluded that the model could be used to successfully design and implement heat exchanger accumulators into small commercially available air conditioning systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
在自行搭建的双蓄能实验平台上进行了制冷兼蓄热实验研究,对比了制冷兼蓄热模式和一般制冷模式,探讨了不同冷冻水流量和不同风机盘管风量对机组性能的影响.实验结果表明:蓄热对机组制冷端的影响很小,但是由于回收了大量的冷凝热,使得机组的综合能效比得到大幅提高,因此蓄热对空调节能具有较大作用.此外,在制冷兼蓄热模式下,冷冻水流量或风机盘管风量越大,机组的综合能效比越大,当风量为1033 m3/h,冷冻水流量为972 L/h时,机组综合能效比高达7.06.  相似文献   

12.
Analysis of energy and exergy has been performed for a latent heat storage system with phase change material (PCM) for a flat-plate solar collector. CaCl2·6H2O was used as PCM in thermal energy storage (TES) system. The designed collector combines in single unit solar energy collection and storage. PCMs are stored in a storage tank, which is located under the collector. A special heat transfer fluid was used to transfer heat from collector to PCM. Exergy analysis, which is based on the second law of thermodynamics, and energy analysis, which is based on the first law, were applied for evaluation of the system efficiency for charging period. The analyses were performed on 3 days in October. It was observed that the average net energy and exergy efficiencies are 45% and 2.2%, respectively.  相似文献   

13.
A validated computational fluid dynamics simulation tool is used to study the long-term performance of a centralized latent heat thermal energy storage system (LHTES). The LHTES system is integrated with a building mechanical ventilation system. Paraffin RT20 was used as a phase change material (PCM) and fins are used to enhance its performance.To reduce the computational time, artificial neural networks (ANN) was used to relate the relationships between the LHTES inputs and output parameters. Extensive CFD simulations were carried out to identify all the influential parameters for the development of ANN. They include phase change temperature range, air flow rate, the geometrical configuration of a LHTES system, fin size, and the unit's length. Further CFD simulations were carried out to provide sufficient data for proper training and testing of the ANN. The ANN model was used to predict the LHTES's outlet air-temperature. There was a good agreement between the ANN prediction and CFD model's prediction.The ANN model then was used to study the annual performance of a LHTES for application in Montreal. We found that the potential of use the centralized LHTES system to reduce the cooling load is high with a wider phase change temperature range. The centralized LHTES system contributes to reducing the cooling load from 21% to 36% when the length of the centralized LHTES system is increased from 500 to 650 mm at a flow rate of 1.5 m/s.  相似文献   

14.
One of the first rehabilitated passive energy standard office buildings in Europe was extensively monitored over two years to analyse the cooling performance of a ground heat exchanger and mechanical night ventilation together with the summer comfort in the building. To increase the storage mass in the light weight top floor, phase change materials (PCM) were used in the ceiling and wall construction. The earth heat exchanger installed at a low depth of 1.2 m has an excellent electrical cooling coefficient of performance of 18, but with an average cooling power of about 1.5 kW does not contribute significantly to cooling load removal. Mechanical night ventilation with 2 air changes also delivered cold at a good coefficient of performance of 6 with 14 kW maximum power. However, the night air exchange was too low to completely discharge the ceilings, so that the PCM material was not effective in a warm period of several days. In the ground floor offices the heat removal through the floor to ground of 2–3 W m−2 K−1 was in the same order of magnitude than the charging heat flux of the ceilings. The number of hours above 26 °C was about 10% of all office hours. The energy performance of the building is excellent with a total primary energy consumption for heating and electricity of 107–115 kW h m−2 a−1, without computing equipment only 40–45 kW h m−2 a−1.  相似文献   

15.
《Applied Thermal Engineering》2000,20(11):1019-1037
A latent heat storage unit incorporating heat pipes embedded in phase change material (PCM) is developed and tested for a novel application in low energy cooling of buildings. A one-dimensional mathematical model of the heat transfer from air to PCM is presented to allow sizing of a test unit. Details of the construction and testing of one heat pipe/PCM unit in a controlled environment are described, and measurements of heat transfer rate and melting times are presented. When the difference between air and PCM temperature was 5°C, the heat transfer rate was approximately 40 W over a melt period of 19 h. The heat transfer rate could be improved, and the phase change time shortened, with an alternative design for finning of the heat pipe inside the PCM.  相似文献   

16.
A novel cooling, heat, and power (CHP) system has been proposed that features a semi-closed Brayton cycle with pressurized recuperation, integrated with a vapor absorption refrigeration system (VARS). The semi-closed Brayton cycle is called the high-pressure regenerative turbine engine (HPRTE). The VARS interacts with the HPRTE power cycle through heat exchange in the generator and the evaporator. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration in an amount that depends on ambient conditions. Water produced as a product of combustion is intentionally condensed in the evaporator of the VARS, which is designed to provide sufficient cooling for the inlet air to the high-pressure compressor, water extraction, and for an external cooling load. The computer model of the combined HPRTE/VARS cycle predicts that with steam blade cooling and a medium-sized engine, the cycle will have a thermal efficiency of 49% for a turbine inlet temperature of 1400°C. This thermal efficiency, is in addition to the large external cooling load, generated in the combined cycle, which is 13% of the net work output. In addition, it also produces up to 1.4 kg of water for each kg of fuel consumed, depending upon the fuel type. When the combined HPRTE/VARS cycle is optimized for maximum thermal efficiency, the optimum occurs for a broad range of operating conditions. Details of the multivariate optimization procedure and results are presented in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Heat transfer barriers and other practical difficulties do currently hamper the development and application of (phase change materials) PCM–wallboard systems. In this study thermal performance of randomly mixed PCM and laminated PCM–wallboard systems have been numerically evaluated and results compared. The laminated system displayed up to 50% increment in heat flux enhancement and about 18% increase in heat transfer rates. Consequently, the laminated PCM–wallboard system has greater potential for heating and cooling application in buildings than the randomly mixed system. Experimental validation and investigation into manufacturing techniques are however needed to establish the commercial viability. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
An alternative cooling system to enhance the safety of Li-ion battery packs   总被引:2,自引:0,他引:2  
A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied.  相似文献   

19.
The imbalance of electrical demand in summer due to cooling system demand is a big problem in many countries. One promising solution is shifting peak demand from early afternoon to night by utilizing natural cold energy resources such as cool outside air during night or running a refrigerator driven by midnight power. In these cases, using the thermal energy storage (TES) of phase change material (PCM) which has a melting point from 15 to 25 °C is one of the most effective ideas. However, few suitable PCMs for this temperature range are at present commercially available. This study aims to evaluate the potential of Mn(NO3)2 · 6H2O (manganese (II) nitrate hexahydrate) as a new PCM for the TES of cooling systems. First, experiments on the modulation of the melting point of Mn(NO3)2 · 6H2O and reduction of supercooling were made by dissolving small amounts of salts in the material. Consequently, MnCl2 · 4H2O was found to have good performance with regard to both modulation of the melting temperature and the heat of fusion. Next, a thermal response test was carried out by using a small cylindrical vessel. Results showed that the required temperature levels for charging and discharging the heat of this mixture were clarified. In addition, the price and safety of this material as a PCM are discussed.  相似文献   

20.
Thermal energy storage by latent heat allows storing high amounts of energy working in narrow margins of temperature. The use of phase change material (PCM) for the latent heat storage has been studied in different applications and it has been commercialized in containers to transport blood, products sensible to temperature, to decrease their energy demand. The use of PCM in cooling and refrigeration has been attracting a lot of interest lately, but for all applications, the properties of these materials need to be known with sufficient accuracy. Regarding heat storage, it is necessary to know the enthalpy as a function of temperature. The most widely used calorimeter is the heat‐flux differential scanning calorimetry (hf‐DSC). The objective of this study is to investigate different methods for hf‐DSC analysis, namely the dynamic method and the step method, and to test their accuracy in the determination of enthalpy–temperature relationship of PCM. For the dynamic method, a strong influence of heating/cooling rate was observed. For the step method, the resulting enthalpy–temperature relationship is independent of heating/cooling rate. Commercial PCM RT27 was chosen as sample material to avoid subcooling and kinetic effects in the test measurements. The approach introduced in this study can be used to carry out similar investigations for other classes of PCM and/or other DSC instruments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号