首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

2.
Noble metals of Pd, Pt, Ru and Rh were introduced into the CuO/ZnO/Al2O3(30/60/10) catalyst via incipient impregnation and co-precipitation methods to examine their effects on the oxidative steam reforming of methanol (OSRM). No obvious effect of Pd and even a negative effect of Pt were observed by incipient impregnation method. With co-precipitation, noble metals were homogeneously dispersed in CuO/ZnO/Al2O3(30/60/10) and interacted with CuO and ZnO. They improved the reducibility of the catalysts and enhanced the dissociative adsorption of methanol. Introducing Pd, Rh or Ru promoted the conversion of methanol, but enhanced the formation of CO. Depositing platinum exhibited a high conversion of methanol and a low selectivity of CO in the OSRM reaction. The promoting effect of noble metals involved facilitating the split and adsorption of H atoms during the dehydrogenation of the intermediates in OSRM.  相似文献   

3.
Single ZrO2 and mixed CeO2-ZrO2 oxides with different CeO2/ZrO2 ratios were prepared by the sol-gel method and the CeO2 by precipitation. The prepared support were impregnated with an aqueous solution of NiCl2·6H2O at an appropriate concentration to yield 3 wt.% of nickel respectively in the catalysts. Catalytic materials were characterized by BET (N2 adsorption-desorption), SEM-EDS, XRD and TPR. The oxidative steam reforming of methanol (OSRM) reaction was investigated on these catalysts for H2 production as a function of temperature. Depending of the CeO2/ZrO2 ratio; the catalysts composition has a significant influence on the surface area (BET), reduction properties and methanol conversion. XRD patterns of the Ni-base catalysts showed well defined diffraction peaks of the metallic Ni except on the Ni/CeO2 catalyst, suggesting that on this sample all of the active phase was highly dispersed. Ni/Ceria-rich catalysts were vastly active for OSRM, giving a total CH3OH conversion at 325 °C with GHSV = 0.3 × 105 h−1. They also showed close selectivity toward H2, with high selectivity to CO2 in all range of temperatures, this suggests that the reverse WGS reaction does not occur on these samples. It seems that the nickel is the phase mainly responsible of hydrogen production although the CeO2/ZrO2 support reduces the CO formation.  相似文献   

4.
Hydrogen production via steam reforming of methanol has been studied over a series of CuO/ZnO/Al2O3 catalysts synthesized by the combustion method using urea as fuel. Furthermore, the effect of alumina loading on the properties of the catalyst has been investigated. XRD analysis illustrated the crystallinity of the Cu and Zn oxides decreases by enhancing alumina loading. BET showed the surface area improvement and FESEM images revealed lower size distribution by increasing the amount of alumina. EDX results gave approximately the same metal oxide compositions of primary gel for the surface of the nanocatalysts. Catalytic performance tests showed the well practicability of catalysts synthesized by the combustion method for steam reforming of methanol process. Alumina addition to the CuO/ZnO catalyst caused the higher methanol conversion and the lower CO generation. Among different compositions the sample with molar component of CuO/ZnO/Al2O3 = 4/4/2.5 showed the best performance which without CO generation at 240 °C its methanol conversion decreased from 90 to 60% after 90 h.  相似文献   

5.
Steam reforming (SRM) and oxidative steam reforming of methanol (OSRM) were carried out over a series of coprecipitated CuO–CeO2 catalysts with varying copper content in the range of 30–80 at.% Cu (= 100 × Cu/(Cu + Ce)). The effects of copper content, reaction temperature and O2 concentration on catalytic activity were investigated. The activity of CuO–CeO2 catalysts for SRM and OSRM increased with the copper content and 70 at.% CuO–CeO2 catalyst showed the highest activity in the temperature range of 160–300 °C for both SRM and OSRM. After SRM or OSRM, the copper species in the catalysts observed by XRD were mainly metallic copper with small amount of CuO and Cu2O, an indication that metallic copper is an active species in the catalysis of both SRM and OSRM. It was observed that the methanol conversion increased considerably with the addition of O2 into the feed stream, indicating that the partial oxidation of methanol (POM) is much faster than SRM. The optimum 70 at.% CuO–CeO2 catalyst showed stable activities for both SRM and OSRM reactions at 300 °C.  相似文献   

6.
CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 °C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied.  相似文献   

7.
The Cu-based catalysts with different supports (CeO2, ZrO2 and CeO2–ZrO2) for methanol steam reforming (MSR) were prepared by a co-precipitation procedure, and the effect of different supports was investigated. The catalysts were characterized by means of N2 adsorption–desorption, X-ray diffraction, temperature-programmed reduction, oxygen storage capacity and N2O titration. The results showed that the Cu dispersion, reducibility of catalysts and oxygen storage capacity evidently influenced the catalytic activity and CO selectivity. The introduction of ZrO2 into the catalyst improved the Cu dispersion and catalyst reducibility, while the addition of CeO2 mainly increased oxygen storage capacity. It was noticed that the CeO2–ZrO2-containing catalyst showed the best performance with lower CO concentration, which was due to the high Cu dispersion and well oxygen storage capacity. Further investigation illuminated that the formation of CO on CuO/ZnO/CeO2–ZrO2 catalyst mainly due to the reverse water gas shift. In addition, the CuO/ZnO/CeO2–ZrO2 catalyst also had excellent reforming performance with no deactivation during 360 h run time and was used successfully in a mini reformer. The maximum hydrogen production rate in the mini reformer reached to 162.8 dm3/h, which can produce 160–270 W electric energy power by different kinds of fuel cells.  相似文献   

8.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

9.
A series of CuO/CeO2 catalysts doping with Nb2O5 were fabricated by co-precipitation method. It is found that the introduction of Nb5+ will result in the substitution of Ce4+ with Nb5+, thus creating mobile electronic carriers in the as-prepared catalysts. The characterization results correlating with the catalytic activity evaluation disclose that the catalyst added with 1 wt. % Nb2O5 shows the most mobile electronic carries, certain amount of weak, medium basic sites and enhanced reducibility and chemical adsorption of CO, thus the best catalytic activity for water–gas shift reaction. However, excessive Nb2O5 addition prevents the incorporation of Cu2+ into CeO2 lattice and partially covers the surface of CuO and CeO2, resulting in weaken their reducibility and interaction between them, thus leading to inferior catalytic performance.  相似文献   

10.
The CeO2/CuO and CuO/CeO2 catalysts were synthesized by the hydrothermal method and characterized via XRD, SEM, H2-TPR, HRTEM, XPS and N2 adsorption–desorption techniques. The study shows that the rod-like structure is self-assembled CeO2, and both hydrothermal time and Ce/Cu molar ratio are important factors when the particle-like CeO2 is being self-assembled into the rod-like CeO2. The CuO is key active component in the CO-PROX reaction, and its reduction has a negative influence on the selective oxidation of CO. The advantage of the inverse CeO2/CuO catalyst is that it still can provide sufficient CuO for CO oxidation before 200 °C in the hydrogen-rich reductive gasses. The traditional CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/CuO catalysts present higher CO2 selectivity when the CO conversion reaches 100%. The performance of mixed sample verifies that they might be complementary in the CO-PROX system.  相似文献   

11.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

12.
The effect of CeO2 loading amount of Ru/CeO2/Al2O3 on CO2 methanation activity and CH4 selectivity was studied. The CO2 reaction rate was increased by adding CeO2 to Ru/Al2O3, and the order of CO2 reaction rate at 250 °C is Ru/30%CeO2/Al2O3 > Ru/60%CeO2/Al2O3 > Ru/CeO2 > Ru/Al2O3. With a decrease in CeO2 loading of Ru/CeO2/Al2O3 from 98% to 30%, partial reduction of CeO2 surface was promoted and the specific surface area was enlarged. Furthermore, it was observed using FTIR technique that intermediates of CO2 methanation, such as formate and carbonate species, reacted with H2 faster over Ru/30%CeO2/Al2O3 and Ru/CeO2 than over Ru/Al2O3. These could result in the high CO2 reaction rate over CeO2-containing catalysts. As for the selectivity to CH4, Ru/30%CeO2/Al2O3 exhibited high CH4 selectivity compared with Ru/CeO2, due to prompt CO conversion into CH4 over Ru/30%CeO2/Al2O3.  相似文献   

13.
Water–gas shift reaction was carried out over a series of CuO/CeO2 catalysts doped with trivalent rare earth oxide (RE2O3, RE = Y, La, Nd and Sm), prepared via co-precipitation method. The effect of the dopants on the structure and catalytic properties of CuO/CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Raman spectra, N2 physisorption, H2-TPR and selective N2O chemisorption characterizations. The results reveal the beneficial role of La2O3 and Nd2O3 doping in increasing the WGS catalytic activities and stabilities of CuO/CeO2 catalysts, while the addition of Y2O3 and Sm2O3 leads to the negative effect. Correlating to the characteristic results, it is found that the performance of CuO/CeO2–RE2O3 catalysts strongly depends on their surface copper dispersion, microstrain value and the amount of oxygen vacancies generated in ceria lattice. Besides, enough evidences suggest that, the most effective active site for WGS reaction is the moderate copper oxide (crystalline) interacted with surface oxygen vacancies of ceria in the CuO–CeO2 system.  相似文献   

14.
A series of CeO2 supports were firstly prepared by precipitation method with NH3⋅H2O (NH), (NH4)2CO3 (NC) and K2CO3 (KC) as precipitant, respectively, and then CuO/CeO2 catalysts were fabricated by depositing CuO on the as-obtained CeO2 supports by deposition-precipitation method. The effect of CeO2 supports prepared from different precipitants on the catalytic performance, physical and chemical properties of CuO/CeO2 catalysts was investigated with the aid of XRD, N2-physisorption, N2O chemisorption, FT-IR, TG, H2-TPR, CO2-TPD and cyclic voltammetry (CV) characterizations. The CuO/CeO2 catalysts were examined with respect to their catalytic performance for the water-gas shift reaction, and their catalytic activities and stabilities are ranked as: CuO/CeO2-NH > CuO/CeO2-NC > CuO/CeO2-KC. Correlating to the characteristic results, it is found that the CeO2 support prepared by precipitation with NH3⋅H2O as precipitant (i.e., CeO2-NH-300) has the best thermal stability and least surface “carbonate-like” species, which make the corresponding CuO/CeO2-NH catalyst presents the highest Cu-dispersion, the highest microstrain (i.e., the highest surface energy) of CuO, the strongest reducibility and the weakest basicity. While, the precipitants that contain CO32- (e.g. (NH4)2CO3 and K2CO3) result in more surface “carbonate-like” species of CeO2 supports and CuO/CeO2 catalysts. As a result, CuO/CeO2-NC and CuO/CeO2-KC catalysts present poor catalytic performance.  相似文献   

15.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

16.
Ni catalysts supported on different carriers like δ,θ-Al2O3, MgAl2O4, SiO2–Al2O3 and ZrO2–Al2O3 were prepared. The solids were characterized by chemical analysis, N2 adsorption–desorption isotherms, X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, high-resolution transmission electron microscopy and temperature-programmed oxidation. The catalytic properties of the samples were evaluated in the reaction of reforming of methane with CO2 at 923 K. It was shown that this kind of support greatly affects the structure and catalytic performance of the catalysts. Ni catalyst supported on MgAl2O4 showed the highest activity and stability due to the presence of small well dispersed Ni particles with size of 5.1 nm. It was shown that the lowest activity of Ni catalyst supported on SiO2–Al2O3 oxide was caused by the agglomeration of nickel particles and formation of filamentous carbon under reaction conditions detected by the high resolution transmission electron microscopy.  相似文献   

17.
Ag promoted ZnO/Al2O3 catalysts were prepared by using the incipient wetness impregnation method. The catalytic properties of steam reforming reaction for hydrogen production on the prepared catalysts were evaluated with H2O:C2H5OH molar ratios of 3:1 at 450 °C and atmospheric pressure. Ag promoted ZnO/Al2O3 catalysts show higher SRE catalytic activity than ZnO/Al2O3 catalysts. H2 and CH3CHO are the major products on Ag promoted catalysts, and C2H4 is also produced probably due to acid sites on Al2O3. SRE mechanism on Ag promoted ZnO/Al2O3 catalysts, which contains C-C scission, is different from that on ZnO/Al2O3 catalysts. A method based on thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to analysis the coking behavior on catalyst surface. The surfaces of Ag promoted ZnO/Al2O3 catalysts show two different types of coking, and suffer higher coke deposition during the steam reforming reaction.  相似文献   

18.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

19.
Τhe feasibility of tailoring the iso-octane steam reforming activity of Cu/CeO2 catalysts through the use of Co as a second active metal (Cu20−xCox, where x = 0, 5, 10, 15, 20 wt%), is investigated. Characterization studies, involving N2 adsorption–desorption at −196 °C (BET), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Reduction (H2-TPR), were carried out to reveal the impact of the morphological, structural and surface properties of the catalysts on the reforming performance. The results showed that reforming activity was monotonically increased upon increasing cobalt loading. The Co/CeO2 catalyst demonstrated the optimum performance with a H2 yield of 70–80% in the 600–800 °C temperature interval. The Co/CeO2 catalyst exhibited also excellent stability at temperatures above 700 °C, while Cu-based catalysts rapidly deactivated in long term stability tests. A close correlation between surface/redox properties and steam reforming efficiency was established. The lower reducibility of Co/CeO2 catalysts, associated with the formation of Co3+ species, in Co3O4-like phase, can be accounted for the enhanced carbon tolerance of Co-based catalysts. Furthermore, the high concentration of surface oxygen species on Co/CeO2 catalysts can be considered for their enhanced performance. On the other hand, the Cu-induced easier reducibility of bimetallic catalysts, in conjunction with carbon deposition and active phase sintering can be accounted for their inferior steam reforming performance. Irreversible changes in the redox properties of Cu-based catalysts, taking place under reaction conditions, could be resulted to ceria deactivation thus hindering the redox process to keep on.  相似文献   

20.
Ti modified Pt/ZrO2 catalysts were prepared to improve the catalytic activity of Pt/ZrO2 catalyst for a single-stage WGS reaction and the Ti addition effect on ZrO2 was discussed based on its characterization and WGS reaction test. Ti impregnation into ZrO2 increased the surface area of the support and the Pt dispersion. The reducibility of the catalyst was enhanced in the controlled Ti impregnation (∼20 wt.%) over Pt/ZrO2 by the Pt-catalysed reduction of supports, particularly, at the interface between ZrO2 and TiO2. The significant CO2 gas band in the DRIFTS results of Pt/Ti[20]/ZrO2 indicated that the Ti addition made the formate decomposition rate faster than the Pt/ZrO2 catalyst, linked with the enhanced Pt dispersion and reducibility of the catalyst. Consequently, Ti impregnation over the ZrO2 support led to a remarkably enhanced CO conversion and the reaction rate of Pt/Ti[20]/ZrO2 increased by a factor of about 3 from the bare Pt/ZrO2 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号