首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydrogen storage properties of 5LiBH4 + Mg2FeH6 reactive hydride composites for reversible hydrogen storage were investigated by comparing with the 2LiBH4 + MgH2 composite in the present work. The dehydrogenation pathway and reaction mechanism of 5LiBH4 + Mg2FeH6 composite were also investigated and elucidated. The self-decomposition of Mg2FeH6 leads to the in situ formation of Mg and Fe particles on the surface of LiBH4, resulting in a well dispersion between different reacting phases. The formation of FeB is observed during the dehydrogenation of 5LiBH4 + Mg2FeH6 composite, which might supplies nucleation sites of MgB2 during the dehydrogenation process, but is not an ascendant catalyst for the self-decomposition of LiBH4. And FeB can also transform to the LiBH4 and Fe by reacting with LiH and H2 during the rehydrogenation process. The dehydrogenation capacity for 5LiBH4 + Mg2FeH6 composite still gets to 6.5 wt% even after four cycles. The X-ray diffraction analyses reveal the phase transitions during the hydriding and dehydriding cycle. The formed FeB in the composite maintains a nanostructure after four hydriding-dehydriding cycles. The loss of hydrogen storage capacity and de-/rehydrogenation kinetics can be attributed to the incomplete generation of Mg2FeH6 during the rehydrogenation process.  相似文献   

2.
3.
4.
LiBH4 is regarded as a promising hydrogen storage material due to its high hydrogen density. In this study, the dehydrogenation properties of LiBH4 were remarkably enhanced by doping hydrogenated Mg3RE compounds (RE denotes La, Ce, Nd rare earth metals), which are composed of nanostructured MgH2 and REH2+x (denoted as H − Mg3RE). For the LiBH4 + H − Mg3La mixture, the component LiBH4 desorbed 6 wt.% hydrogen even at a relatively low temperature of 340 °C, far lower than the desorption temperature of pure LiBH4 or the 2LiBH4 + MgH2 system. This kinetic improvement is attributed to the hydrogen exchange mechanism between the H − Mg3La and LiBH4, in the sense that the decomposition of MgH2 and LaH2+x catalyzed the dehydrogenation of LiBH4 through hydrogen exchange effect rather than mutual chemical reaction requiring higher temperature and hydrogen pressure. However, prior to fast hydrogen release, the hydrogen exchange effect suppressed the dehydriding of MgH2 and elevated its desorption temperature. It is expected to strengthen the hydrogen exchange effect by compositing the LiBH4 with other nanosized metal hydrides and to obtain better dehydrogenation properties.  相似文献   

5.
Synthesis and decomposition mechanisms of ternary Mg2FeH6 were investigated using in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high-pressure differential scanning calorimetry (HP-DSC). Two routes for synthesis of Mg2FeH6 were studied. The first utilizes a ball-milled homogeneous MgH2–Fe powder mixture and the second uses a mixture of Fe and Mg formed by decomposition of the ternary hydride, Mg2FeH6. In both cases the reaction mixture was sintered in a temperature range from RT to 500 °C under a hydrogen pressure of 100–120 bar. The reaction mechanisms were established using in-situ SR-PXD. The formation of Mg2FeH6 consists of two steps with MgH2 as an intermediate compound, and the presence of magnesium was not observed. In contrast, the decomposition of Mg2FeH6 was found to be a single-step reaction. Additionally, both reactions were investigated using HP-DSC under similar conditions as in the SR-PXD experiments in order to estimate reaction enthalpies and temperatures. Mg2FeH6 was found to form from MgH2 and Fe under hydrogen pressure regardless of whether the MgH2 was introduced in the mixture or formed prior to creation of the ternary hydride.  相似文献   

6.
Amorphous Mgx(LaNi3)100−x (x = 40, 50, 60, 70) alloys with ribbon shape (5 mm wide, 0.2 mm thick) have been prepared by rapid solidification, using a melt-spinning technique. Their microstructure, hydrogen storage properties and thermal stability were studied by means of XRD, SEM, PCTPro2000 and DSC analysis, respectively. The results indicated that when Mgx(LaNi3)100−x alloys have been hydrogenated at 573 K under 2 MPa hydrogen pressure, LaH3 phase is formed in the case of x (x = 40, 50, 60, 70), Mg2NiH4 phase formed in the case of x (x = 40, 50, 60, 70), Mg2NiH0.3 phase formed in the case of x (x = 40, 50), and MgH2 phase formed in the case of x = 70. Experimental data of hydrogen desorption kinetics, tested at 523 K, 573 K and 623 K, are in good agreement with Avrami–Erofeev equation. The maximum hydrogen absorption capacity is 2.71 wt.% for Mg70(LaNi3)30 and 2.35 wt.% for Mg70(LaNi3)30, the increase of hydrogen desorption capacity is in the order of x = 70 > x = 60 > x = 50 > x = 40. Based on DSC analysis, the activation energies for dehydrogenation of these samples are calculated to be 122 ± 2 kJ/mol (x = 40) > 101 ± 3 kJ/mol (x = 50) > 84 ± 5 kJ/mol (x = 60) > 64 ± 3 kJ/mol (x = 70), which are in agreement with the results of hydrogen desorption kinetics.  相似文献   

7.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   

8.
A new model has been successfully used to investigate the hydrogen absorption kinetics mechanism of La2Mg17-based composites. The results indicate that different preparation conditions lead to different rate-controlling steps during hydrogen absorption process. For La2Mg17–LaNi5 composite synthesized by the method of melting, the rate-controlling step is the surface penetration of hydrogen atoms, which does not change by addition agent (LaNi5). However, mechanical milling can change the rate-limiting steps of hydriding reaction in the La2Mg17–LaNi5 composite from surface penetration to diffusion of hydrogen in the hydride layer. With the enhancement of milling intensity, the rate-controlling step in La1.8Ca0.2Mg14Ni3 alloy changes from surface penetration to diffusion. In addition, the activation energies of hydrogen absorption for La2Mg17−20 wt%LaNi5 and La1.8Ca0.2Mg14Ni3 are obtained by this model.  相似文献   

9.
10.
Mg2Ni1−xMnx(x = 0, 0.125, 0.25, 0.375) electrode alloys are prepared by mechanical alloying (MA) under argon atmosphere at room temperature using a planetary high-energy ball mill. The microstructures are characterized by XRD and SEM. XRD analysis results indicate that the substitution of Mn for Ni could inhibit the formation of MgNi2 phase with the increases of x from 0 to 0.375. Replacing Ni with Mn can also promote the formation of the amorphous phase when x increases from 0 to 0.25 for the MA alloys milled for 48 h. The new phase Mg3MnNi2 is formed only when x = 0.375 after 48 h of milling. This new phase belongs to the face-centered cubic lattice (Fd-3m) with the lattice constant a being 1.1484 nm. Estimated from the peaks broadening, the crystallite size and lattice strain of Mg3MnNi2 phase are 15.6 ± 3.6 nm and 1.09 ± 0.34%, respectively. Curve fit of XRD shows that amorphous and nanocrystalline Mg2Ni coexist in the Mg2Ni1−xMnx (x = 0, 0.125, 0.25) alloys milled for 48 h. The SEM observation reveals that all the MA alloys particles are mainly flaky and show cleavage fracture morphology and these particles are agglomerates of many smaller particles, namely subparticles. Electrochemical measurements indicate that all MA alloys have excellent activation properties. The discharge capacities of MA alloys increase with the prolongation of milling time. For 16 h of milling, with the increase of Mn content, the discharge capacities of Mg2Ni1−xMnx (x = 0, 0.125, 0.25, 0.375) MA alloys monotonously decrease. For 24 h of milling, the discharge capacities of the Mg2Ni1−xMnx (x = 0, 0.125, 0.25, 0.375) alloys also show a rough tendency to decrease with the increase of Mn content except Mg2Ni0.875Mn0.125 MA alloy. On the other hand, for 48 h of milling, as the rise of Mn content from x = 0.125 to 0.375, the discharge capacities increase. Mg(OH)2 is formed during charge/discharge cycles in the KOH solution for all MA alloys. After 48 h of milling, the substitution of Mn for Ni for x = 0.25 improves the cycle stability at the expense of decreasing the discharge capacity. In contrast, Mg3MnNi2 phase is relatively stable during charge/discharge cycles and therefore can significantly enhance the cycle stability under simultaneously maintaining a high discharge capacity.  相似文献   

11.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

12.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

13.
The Mg17Al12 intermetallic compound is brittle and easily pulverized and hydrogenated, which holds the promise as a hydrogen source because the theoretical hydrogen generation capacity by hydrolysis of Mg17Al12 hydride (MHA) is as high as 13.6 wt.%. However, it was found that the hydrolysis reaction of MHA without any additives would be rapidly interrupted because of the formation of a passive layer on the surface of the particles. The influence of CaH2 on the hydrogen generation performances of the MHA + CaH2 mixtures by hydrolysis was investigated in this paper. The result showed that the addition of CaH2 by ball-milling is effective to improve the hydrolysis reactivity of the mixtures. The best was obtained by MHA+10wt.% CaH2 mixture ball-milled for 1 h, which produces 1389 ml H2/g at 70 °C after 1 h of hydrolysis in pure water, namely the hydrogen generation yield reaches 94.8%. In this paper, the reasons of the improvement and the reaction mechanism have also been discussed respectively.  相似文献   

14.
The magnesium hydrolyzing reaction was catalyzed in situ using a layered Mg2Ni compound, rapidly producing hydrogen in NaCl solution. The post-H2 generation residue (mixture of Mg(OH)2 and Mg2Ni catalyst) was recycled to recover pure Ni powder from the waste mixture. Pure Mg (153 g) and pure Ni (47 g) in a eutectic composition were easily melted to form a molten alloy by a super-high-frequency (35,000 Hz) induction furnace. The lamellar material had an Mg/Mg2Ni/Mg/Mg2Ni… layered structure, in which each layer was ∼0.8 μm thick; Mg was an anodic phase and Mg2Ni was a cathodic phase (the catalyst). Bulk Mg/Mg2Ni composite alloy contains many microgalvanic cells. Owing to the lamellar microstructure, no dense hydrated oxide film that might have caused surface passivation was found, allowing continuous H2 generation until no magnesium remained to participate in the hydrolysis. The activation energy of the hydrolysis reaction in simulated sea water was ∼36.35 kJ mol−1.  相似文献   

15.
Mg2−xAlxNi (x = 0, 0.25) electrode alloys with and without multiwalled carbon nanotubes (MWCNTs) have been prepared by mechanical alloying (MA) under argon atmosphere at room temperature using a planetary high-energy ball mill. The microstructures of synthesized alloys are characterized by XRD, SEM and TEM. XRD analysis results indicate that Al substitution results in the formation of AlNi-type solid solution that can interstitially dissolve hydrogen atoms. In contrast, the addition of MWCNTs hardly affects the XRD patterns. SEM observations show that after co-milling with 5 wt. % MWCNTs, the particle sizes of both Mg2Ni and Mg1.75Al0.25Ni milled alloys are decreased explicitly. The TEM images reveal that ball milling is a good method to cut long MWCNTs into short ones. These MWCNTs aggregate along the boundaries and surfaces of milled alloy particles and play a role of lubricant to weaken the adhesion of alloy particles. The majority of MWCNTs retain their tubular structure after ball milling except a few MWCNTs whose tubular structure is destroyed. Electrochemical measurements indicate that all milled alloys have excellent activation properties. The Mg1.75Al0.25Ni-MWCNTs composite shows the highest discharge capacity due to the synergistic effects of MWCNTs and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy. However, the improvement on the electrode cycle stability by adding MWCNTs is unsatisfactory.  相似文献   

16.
The Mechanically Activated Self-propagating High temperature Synthesis (MASHS) has been employed to obtain nanostructured Mg2Ni alloys. MASHS process has been further improved by controlling the electrical parameter measurements during the combustion reaction under the thermal explosion mode. The samples were hydrogenated at 20  bar and 300 °C by means of a Pressflow Gas Controller while the dehydrogenation was conducted in a Differential Scanning Calorimetry (DSC) equipped with an H2 detector of the purged gas. Nanostructured Mg2Ni demonstrated hydrogen storage capacity around 3.5 wt%. The desorption temperature was about 250 °C at 3 °C/min. The activation energy for dehydrogenation, calculated by the Kissinger method, was about 100  kJ/mol.  相似文献   

17.
Mg2−xTixNi (x = 0, 0.5) electrode alloys have been prepared by mechanical alloying (MA) under argon atmosphere at room temperature using a planetary high-energy ball mill. The microstructures of synthesized alloys are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of substitutional doping of Ti in Mg2Ni phase have been investigated by first-principles density functional theory calculations. XRD analysis results indicate that Ti substitution for Mg in Mg2Ni-type alloys results in the formation of TiNi (Pm-3m) and TiNi3 intermetallics. With the increase of milling time, the TiNi phase captures Ni from Mg2Ni to further form TiNi3 phase and the MgO phase increases. The calculated results of enthalpy of formation indicate that the most preferable site of Ti substitution in Mg2Ni lattice is Mg(6i) position and the stability of phase gradually decreases along the sequence TiNi3 phase > TiNi phase > Mg9Ti3Mg(6i)Ni6 Ti-doped phase > Mg2Ni phase. SEM observations show that the average particle sizes of Mg2Ni and Mg1.5Ti0.5Ni milled alloys decrease and increase, respectively with increasing the milling time. The TEM analysis results reveal that TiNi and Mg2Ni coexist as nanocrystallites in the Mg1.5Ti0.5Ni alloy milled for 20 h. Electrochemical measurements indicate that the maximum discharge capacities of Mg2Ni and Mg1.5Ti0.5Ni alloys rise and decline, respectively with the prolongation of milling time. The Mg1.5Ti0.5Ni alloy milled for 20 h shows the highest discharge capacity among all milled alloys. The capacity retaining rate of Mg1.5Ti0.5Ni milled alloys is better than that of Mg2Ni milled alloys.  相似文献   

18.
Amorphous Mg2Ni alloy was successfully synthesized by means of mechanical alloying. Then, the multi-walled carbon nanotubes (MWCNTs) were added by high-energy ball milling to catalyze the amorphous alloy. The X-ray diffraction (XRD) spectroscopy reveal that the as-cast Mg2Ni alloy has presented a completely amorphous state under specific conditions of high-energy ball milling process. Different process parameters of ball-to-powder ratio (10:1, 20:1, 40:1) and milling time have been attempted for the preparation of amorphous Mg2Ni alloy. The results show that the milling time and ball-to-powder weight ratio have significantly influence on the amorphization process of crystalline Mg2Ni alloy. Before and after the milling, phase compositions and microstructures of the prepared materials were characterized by XRD, scanning electron microscope (SEM), electron energy dispersion spectrum (EDS) and transition electron microscope (TEM) approaches. The morphology of composite Mg2Ni/MWCNTs was investigated, the TEM images show that the MWCNTs imbed on the surface of the particles after milling for 1 h, and the MWCNTs with and without tubular structure have been observed. The hydrogen storage properties of amorphous Mg2Ni alloys were improved by the catalytic effect of MWCNTs. The catalytic effect and mechanism of MWCNTs on the hydrogen storage properties of amorphous Mg2Ni alloy are discussed and investigated.  相似文献   

19.
The electrochemical reaction of lithium ion with Mg2FeH6, Mg2CoH5 and Mg2NiH4 complex hydrides prepared by reactive grinding is studied here. Plateaus at an average potential of 0.25 V, 0.24 V and 0.27 V corresponding to discharge capacities of 6.6, 5.5 and 3.6 Li can be achieved respectively for Mg2FeH6, Mg2CoH5 and Mg2NiH4. From in situ X-ray diffraction (XRD) characterizations of complex hydride based electrodes, dehydrogenation leads to a decrease of the intensities of the diffraction peaks suggesting a strong loss of crystallinity since formation of Mg and M (M = Fe, Co, Ni) peaks is not observed. 57Fe Mössbauer spectroscopy confirms the formation of nanoscale Fe or an amorphous Mg–Fe alloy during the decomposition of Mg2FeH6. Interestingly, lattice parameter variations suggest phase transitions in the Mg2NiH4 system involving the formation of low hydrogen content hydride Mg2NiH, while an increase of lattice parameters of Mg2CoH5 hydride could be attributed to the formation of a Mg2CoH5Lix solid solution compound up to x = 1.  相似文献   

20.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号