首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the new environmentally-compatible vehicle was designed to mitigate urban warming, air pollution and carbon dioxide (CO2) emissions in the urban area. Principal specifications for its optimal design will be clarified and it will be shown that urban environment is improved with dissemination of such vehicles. First, we evaluate optimal specifications of the new conceptual hybrid EV (Electric Vehicle) equipped with the flywheel and photovoltaic (PV) cell and also report the results of the driving simulation of the proposed vehicles. The energy density of the flywheel made of Carbon Fiber Reinforced Plastics (CFRP) is three times higher than Pb battery, which has been used for the EVs. The most noticeable feature of the flywheel is that it has very high charging rate. By employing the flywheel and PV cell as energy regeneration, the electric power consumption rate of the vehicle can be 188 km/l in the community-driving schedule, and over 50 km/l in the long-driving schedules (the electric power consumption rate is converted to the fuel consumption rate of gasoline). Furthermore, three-dimensional computer simulation of urban atmosphere is conducted and it is shown that the dissemination of the proposed vehicle reduce the concentration of CO2 in the urban area and mitigate urban warming.  相似文献   

2.
The claim of catastrophic man made climate change or global warming through anthropogenic CO2 has presently focused the interest on the tailpipe emissions of CO2 per km, with recent legislations obsessively targeting these emissions of CO2 with defectively implemented procedures. With a variety of different propulsion solutions (electric, hybrid electric, hybrid mechanic, conventional) and different fuels (Diesel, Petrol, alternative fossil, alternative renewable) available in the near future, a more comprehensive approach based on the full fuel cycle, and eventually also the full life cycle of the vehicle appear to be necessary. The paper is a contribution to trigger further improvement to currently implemented procedures. The paper discusses the CO2 emission data in the present form, some simple but effective measures to improve the accuracy of the data collection procedure, and propose results of fuel cycle CO2-e analysis of vehicles with electric and thermal engines having different fuels. Vehicles with advanced internal combustion engines and power trains fuelled with Diesel may reach CO2-e values of 100 g/km in Australia. Use of bio-ethanol in these vehicles may deliver in Australia a significant reduction of CO2-e emissions to values below 36 g/km. Emission factors for Victoria are presently 1.23 kg CO2-e/kWh for the purchased electricity and vehicles powered by electric motors will need a significant reduction of this indirect CO2-e emission to become competitive. Values below 0.5 kg CO2-e/kWh are needed to make electric cars competitive with Diesel cars while values below 0.1 kg CO2-e/kWh are needed to make electric cars competitive with bio-ethanol cars. Compared with all these alternatives, renewable hydrogen may possibly compete with Diesel when produced with renewable energy sources and made available at the pump for less than 0.1 kg CO2-e/MJ of fuel energy, and with bio-ethanol if produced and distributed at a cost below 0.02 kg CO2-e/MJ of fuel energy.  相似文献   

3.
A new average CO2 emissions limit for passenger cars was introduced in EU in 2009 imposing gradual average CO2 emissions reduction to 130 g/km until 2015. This paper attempts to study possible changes in vehicle characteristics for meeting this limit taking into account the average European passenger car of 2007–2008. For this purpose first the most important factors affecting vehicle fuel consumption over the reference cycle (NEDC) are identified. At a second step, the CO2 benefit from the optimisation of these factors is quantified, through simulations of 6 different passenger cars commonly found in the European fleet. For the simulations Advisor 2002 was employed and validated against published type approval data. The analysis indicated that substantial reductions in vehicle weight, tyre rolling resistance and engine efficiency are necessary to reach even the 2008 target. A 10% reduction in average vehicle weight combined with 10% better aerodynamic characteristics, 20% reduced tyre rolling resistance and a 7.5% increase in average powertrain efficiency can lead to CO2 reductions of approximately 13% (about 138 g/km based on 2007–2008 fleet-wide performance). Complying with the 130 g/km within the next six-year timeframe will be a rather difficult task and additional technical measures appear to be necessary.  相似文献   

4.
The reduction of CO2 emissions and fuel consumption from road transportation constitutes an important pillar of the European Union strategy for implementing the Kyoto Protocol. The commitment to reduce passenger car average CO2 emissions at 140 g/km in 2008 signed by European car manufacturers and the European Commission is up to now the most important initiative towards limiting CO2 emissions from road transportation and particularly from passenger cars. Until today, annual reports show the manufacturers’ efforts in limiting CO2 emissions is within the intermediate target set by the commitment and these results are incorporated in emissions estimations and scientific studies. This paper analyses the origin of the progress achieved so far in CO2 emissions and attempts an assessment of the commitment using independent experimental emission data. Additionally, the applicability of the commitment-monitoring data into policy and decision-making tools is being examined. The results indicate that a significant part of the reductions achieved so far is due to a market shift towards diesel vehicle sales and that no reduction factors should be applied yet in CO2 emissions estimation models.  相似文献   

5.
The main objective of this research is to analyze the impact of the market share increase of hydrogen based road vehicles in terms of energy consumption and CO2, on today's Portuguese light-duty fleet. Actual yearly values of energy consumption and emissions were estimated using COPERT software: 167112 TJ of fossil fuel energy, 12213 kton of CO2 emission and 141 kton of CO, 20 kton of HC, 46 kton of NOx and 3 kton of PM. These values represent 20–40% of countries total emissions. Additionally to base fleet, three scenarios of introduction of 10–30% fuel cell vehicles including plug-in hybrids configurations were analysed. Considering the scenarios of increasing hydrogen based vehicles penetration, up to 10% life cycle energy consumption reduction can be obtained if hydrogen from centralized natural gas reforming is considered. Full life cycle CO2 emissions can also be reduced up to 20% in these scenarios, while local pollutants reach up to 85% reductions. For the purpose of estimating road vehicle technologies energy consumption and CO2 emissions in a full life cycle perspective, fuel cell, conventional full hybrids and hybrid plug-in technologies were considered with diesel, gasoline, hydrogen and biofuel blends. Energy consumption values were estimated in a real road driving cycle and with ADVISOR software. Materials cradle-to-grave life cycle was estimated using GREET database adapted to Europe electric mix. The main conclusions on CO2 full life cycle analysis is that light-duty vehicles using fuel cell propulsion technology are highly dependent on hydrogen production pathway. The worst scenario for the current Portuguese and European electric mix is hydrogen produced from on-site electrolysis (in the refuelling stations). In this case full life cycle CO2 is 270 g/km against 190 g/km for conventional Diesel vehicle, for a typical 150,000 km useful life.  相似文献   

6.
The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6–3.8% in CO2 emissions intensity and a reduction in annual tax revenue of €191 M.  相似文献   

7.
Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03–0.53 MJeq/MJ emitting 0.7–27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.  相似文献   

8.
In 2006, energy-related CO2 emissions from transport energy in Ireland were 168% above 1990 levels. Private cars were responsible for approx 45% of transport energy demand in 2006 (excluding fuel tourism). The average annual growth of new cars between 1990 and 2006 was 5.2%. This paper focuses on these new cars entering the private car fleet, in particular the purchasing trend towards larger size cars. This has considerably offset the improvements in the technical efficiency of individual car models. The analysis was carried out on the detailed data of each individual new vehicle entering the fleet in 2000–2006. The average CO2 emissions per kilometre for new petrol cars entering the Irish fleet grew from 166 to 168 g CO2/km from 2000 to 2005 and reduced to 164 in 2006. For diesel cars the average reduced from 166 in 2000 to 161 in 2006. The paper also discusses how a recent change in vehicle registration taxation and annual motor tax had a significant impact purchasing trends by supporting lower emission vehicles. Cars with emissions up to 155 g CO2/km represented 41% of new private cars sold in Ireland in 2007 compared with 84% during the period July–November 2008.  相似文献   

9.
This paper analyses the energy consumption and CO2 emissions of biological hydrogen production from sugarcane and potato peels using life cycle assessment methodology for the Portuguese scenario. Potato peels are assumed to be produced locally from Portuguese potato cultivation. Sugarcane is assumed to be imported from Brazil and fermented in Portugal. The uncertainty is quantified by a Monte Carlo approach. Biohydrogen was compared with natural gas reforming, electrolysis and other energy resources such as diesel and electricity. Between bioH2 feedstocks, sugarcane stands out with the lowest values for energy consumption and CO2 emissions with 0.30–0.34 MJ of consumed energy and 24–31 g of CO2 emitted per 1 MJ of H2 produced. However these results do not have a major contribution to the Portuguese energy independency problem. On the other hand potato peels feedstocks are more attractive, presenting values of 0.49–0.61 MJ/MJH2 and 60-77 gCO2/MJH2. According to Portuguese production capabilities, it is estimated that biohydrogen will be able to supply 3100 vehicles of a typical Portuguese urban taxi fleet or up to 1.4 million passenger cars with a daily commuting distance of 30 km.  相似文献   

10.
Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages—material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO2-eq). Primary energy demand, petroleum demand and GHG emissions in China’s passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.  相似文献   

11.
《Biomass & bioenergy》2005,28(5):475-489
Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach.The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4–21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg−1).In the GHG emissions analysis, nitrous oxide (N2O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha−1 year−1 and N2O emissions from soil are 0.5–2.8 kg N ha−1 year−1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260–922 g CO2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41–61% km−1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions.  相似文献   

12.
《Biomass & bioenergy》2007,31(8):543-555
The energetic and environmental performance of production and distribution of the Brassica carinata biomass crop in Soria (Spain) is analysed using life cycle assessment (LCA) methodology in order to demonstrate the major potential that the crop has in southern Europe as a lignocellulosic fuel for use as a renewable energy source.The Life Cycle Impact Assessment (LCIA) including midpoint impact analysis that was performed shows that the use of fertilizers is the action with the highest impact in six of the 10 environmental categories considered, representing between 51% and 68% of the impact in these categories.The second most important impact is produced when the diesel is used in tractors and transport vehicles which represents between 48% and 77%. The contribution of the B. carinata cropping system to the global warming category is 12.7 g CO2 eq. MJ−1 biomass produced. Assuming a preliminary estimation of the B. carinata capacity of translocated CO2 (631 kg CO2 ha−1) from below-ground biomass into the soil, the emissions are reduced by up to 5.2 g CO2 eq. MJ−1.The production and transport are as far as a thermoelectric plant of the B. carinata biomass used as a solid fuel consumes 0.12 MJ of primary energy per 1 MJ of biomass energy stored. In comparison with other fossil fuels such as natural gas, it reduces primary energy consumption by 33.2% and greenhouse gas emission from 33.1% to 71.2% depending on whether the capacity of translocated CO2 is considered or not.The results of the analysis support the assertion that B. carinata crops are viable from an energy balance and environmental perspective for producing lignocellulosic solid fuel destined for the production of energy in southern Europe. Furthermore, the performance of the crop could be improved, thus increasing the energy and environmental benefits.  相似文献   

13.
In this study, emissions of internal combustion engine, hybrid, and fuel cell vehicles have been investigated when they use hydrogen in gas or liquid form. Well to pump (WTP) and well to wheel (WTW) emissions of volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NOx), particulate matters (PM10 and PM2.5), sulphur oxides (SOx), and carbon dioxide (CO2) emitted from vehicles are compared for scenarios in 2010, 2020, 2030, 2040, and 2050 years. For these years, 2005, 2015, 2025, 2035, and 2045 vehicle technologies are used in the analyses. In total emissions, gaseous hydrogen (GH2) powered fuel cell vehicles (FCV) appear to be the best options, while liquid hydrogen (LH2) powered spark ignition internal combustion engine vehicles (SI ICEV) are the worst. The lowest and highest CO2 emission values are seen as 81 g/km and 416 g/km in GH2 powered FCVs in 2050 and LH2 powered SI ICEVs in 2010, respectively.  相似文献   

14.
The main objective of this research is to quantify the impact of introducing electric vehicles and plug-in hybrid vehicles, including fuel cell on conventional fleets. The impact is estimated in terms of local pollutants, HC, CO, NOx, PM, and in terms of CO2 and water vapour global emissions. The specific fleet of Portugal, roughly 6 million light-duty vehicles (30% diesel, 70% gasoline) is considered, and the mobility indicator of the fleet, 90 thousand million p × km, is kept constant throughout the analysis. Probability density functions for energy consumption and emissions are derived for conventional, electric and plug-in hybrid vehicles, in charge depleting and charge sustaining modes. The Monte Carlo method is used to obtain average distribution estimates for discounting values of “old vehicles” that are removed from the fleet, and to add average distribution estimates for the “new vehicles” entering the fleet. Considering the actual Portuguese fleet as the reference case, local pollutant emissions decrease by a factor of 10-53%, for 50% fleet replacement. A potential 23% decrease of CO2 is foreseen, and a potential 31% increase of H2O emissions is forecasted. Life cycle water vapour emissions tend to rise and are, typically, 2-4 times higher than CO2 values at the upstream stage, due to its release in the cooling towers of thermal power plants. It is interesting to note that considering 1 MJ of energy required at vehicle wheels, in an overall life cycle context, both fuel cell and electric modes have nearly twice as much H2O emissions than internal combustion vehicles. CO2 emissions tend to decrease with electric drive vehicles penetration due to the higher fleet life cycle efficiency.  相似文献   

15.
In this study, a Life Cycle Assessment (LCA) of biomass-based hydrogen production is performed for a period from biomass production to the use of the produced hydrogen in Proton Exchange Membrane (PEM) fuel cell vehicles. The system considered is divided into three subsections as pre-treatment of biomass, hydrogen production plant and usage of hydrogen produced. Two different gasification systems, a Downdraft Gasifier (DG) and a Circulating Fluidized Bed Gasifier (CFBG), are considered and analyzed for hydrogen production using actual data taken from the literature. Fossil energy consumption rate and Green House Gas Emissions (GHG) are defined and indicated first. Next, the LCA results of DG and CFBG systems are compared for 1 MJ/s hydrogen production to compare with each other as well as with other hydrogen production systems. While the fossil energy consumption rate and emissions are calculated as 0.088 MJ/s and 6.27 CO2 eqv. g/s in the DG system, they are 0.175 MJ/s and 17.13 CO2 eqv. g/s in the CFBG system, respectively. The Coefficient of Hydrogen Production Performance (CHPP) (newly defined as a ratio of energy content of hydrogen produced from the system to the total energy content of fossil fuels used) of the CFBG and DG systems are then determined to be 5.71 and 11.36, respectively. Thus, the effects of some parameters, such as energy efficiency, ratio of cost of hydrogen, on natural gas and capital investments efficiency are investigated. Finally, the costs of GHG emissions reduction are calculated to be 0.0172 and 0.24 $/g for the DG and CFBG systems, respectively.  相似文献   

16.
Hydrogen is the most abundant element in the world and produces only water vapor as a result of chemical reaction that occurred in fuel cells. Therefore, fuel cell electric vehicles, which use hydrogen as fuel, continue its growing trend in the sector. In this study, an energy distribution comparison is carried out between fuel cell electric vehicle and fuel cell hybrid electric vehicle. Hybridization of fuel cell electric vehicle is designed by equipped a traction battery (15 kW). Modeled vehicles were prepared under AVL Cruise program with similar chassis and same fuel cell stacks for regular determining process. Numerical analyses were presented and graphed with instantaneous results in terms of sankey diagrams with a comparison task. WLTP driving cycle is selected for both vehicles and energy input/output values given with detailed analyses. The average consumption results of electric and hydrogen usage is found out as 4.07 kWh and 1.125 kg/100 km respectively for fuel cell electric vehicle. On the other hand, fuel cell hybrid electric vehicle’s average consumption results figured out as 3.701 kWh for electric and 0.701 kg/100 km for hydrogen consumption. As a result of this study, fuel cell hybrid electric vehicle was obtained better results rather than fuel cell electric vehicle according to energy and hydrogen consumption with 8% and 32%, respectively.  相似文献   

17.
An effort has been made to simulation a compression ignition engine using hydrogen-diesel, hydrogen-diethyl ether, hydrogen-n-butanol and base diesel fuel as alternatives. The engine measured for the simulation is a single cylinder, four stroke, direct injection, diesel engine. During the simulation the injection timing and engine speed are kept constant at 23°bTDC and 1500 rpm. Diesel-RK, a piece of commercial software employed for this project, can forecast an engine emission, performance and combustion characteristics. The examination of the anticipated outcomes reveals that adding hydrogen to diesel leads in a small increase in efficiency and fuel consumption. With the usage of hydrogen-blend fuels, the majority of dangerous pollutants in exhaust are greatly decreased. The shortest ignition delay was consistently given by 5H295DEE. The lowest CO2 (578.61 g/kWh) was given by 5H295nB at CR 19.5. Hydrogen blends increase NOx emissions more than base diesel fuel. In the case of smoke and particulate matter emission, the reduce tendency was seen.  相似文献   

18.
This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO2. These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions.  相似文献   

19.
《Journal of power sources》2006,155(2):297-310
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.  相似文献   

20.
Direct rebound effects result from increased consumption of cheaper energy services. For example, more fuel-efficient cars encourage more car travel. This study is the first to quantify this effect for personal automotive travel in Great Britain. We use aggregate time series data on transport activity, fuel consumption and other relevant variables over the period 1970–2011 and estimate the direct rebound effect from the elasticity of both vehicle and passenger kilometres with respect to: a) vehicle fuel efficiency (km/MJ); b) the fuel cost of driving (£/km); and c) road fuel prices (£/MJ). We estimate a total of 108 models, paying careful attention to methodological issues and model diagnostics. Taking changes in fuel efficiency as the explanatory variable, we find little evidence of a long-run direct rebound effect in Great Britain over this period. However, taking changes in either the fuel cost of driving or fuel prices as the explanatory variable we estimate a direct rebound effect in the range 9% to 36% with a mean of ~ 19%. This estimate is consistent with the results of US studies and suggests that around one fifth of the potential fuel savings from improved car fuel efficiency may have been eroded through increased driving. We also show how the normalisation of distance travelled (per capita, per adult or per driver) affects the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号