首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomass can be applied as the primary source for the production of hydrogen in the future. The biomass is converted in an atmospheric fluidized bed gasification process using steam as the gasifying agent. The producer gas needs further cleaning and processing before the hydrogen can be converted in a fuel cell; it is assumed that the gas cleaning processes are able to meet the requirements for a PEM-FC. The compressed hydrogen is supplied to a hydrogen grid and can be used in small-scale decentralized CHP units. In this study it is assumed that the CHP units are based on low temperature PEM fuel cells. For the evaluation of alternative technologies the whole chain of centralized hydrogen production from biomass up to and including decentralized electricity production in PEM fuel cells is considered.Two models for the production of hydrogen from biomass and three models for the combined production of electricity and heat with PEM fuel cells are built using the computer program Cycle-Tempo. Two different levels of hydrogen purity are considered in this evaluation: 60% and 99.99% pure hydrogen. The purity of the hydrogen affects both the efficiencies of the hydrogen production as well as the PEM-FC systems. The electrical exergy efficiency of the PEM-FC system without additional heat production is calculated to be 27.66% in the case of 60% hydrogen and 29.06% in the case of 99.99% pure hydrogen. The electrical exergy efficiencies of the whole conversion chain appear to be 21.68% and 18.74%, respectively. The high losses during purification of the hydrogen gas result in a higher efficiency for the case with low purity hydrogen. The removal of the last impurities strongly increases the overall exergy losses of the conversion chain.  相似文献   

2.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent.  相似文献   

3.
Thermodynamic calculations were carried out to evaluate the performance of small-scale gasifier–SOFC–GT systems of the order of 100 kW. Solid Oxide Fuel Cells (SOFCs) with Nickel/Gadolinia Doped Ceria (Ni/GDC) anodes were considered. High system electrical efficiencies above 50% are achievable with these systems. The results obtained indicate that when gas cleaning is carried out at temperatures lower than gasification temperature, additional steam may have to be added to biosyngas in order to avoid carbon deposition. To analyze the influence of gas cleaning at lower temperatures and steam addition on system efficiency, additional system calculations were carried out. It is observed that steam addition does not have significant impact on system electrical efficiency. However, generation of additional steam using heat from gas turbine outlet decreases the thermal energy and exergy available at the system outlet thereby decreasing total system efficiency. With the gas cleaning at atmospheric temperature, there is a decrease in the electrical efficiency of the order of 4–5% when compared to the efficiency of the systems working with intermediate to high gas-cleaning temperatures.  相似文献   

4.
The design of solid oxide fuel cells (SOFC) using biogas for distributed power generation is a promising alternative to reduce greenhouse gas emissions in the energy and waste management sectors. Furthermore, the high efficiency of SOFCs in conjunction with the possibility to produce hydrogen may be a financially attractive option for biogas plants. However, the influence of design variables in the optimization of revenues and efficiency has seldom been studied for these novel cogeneration systems. Thus, in order to fulfill this knowledge gap, a multi-objective optimization problem using the NSGA-II algorithm is proposed to evaluate optimal solutions for systems producing hydrogen and electricity from biogas. Moreover, a mixed-integer linear optimization routine is used to ensure an efficient heat recovery system with minimal number of heat exchanger units. The results indicate that hydrogen production with a fuel cell downstream is able to achieve high exergy efficiencies (65–66%) and a drastic improvement in net present value (1346%) compared with sole power generation. Despite the additional equipment, the investment costs are estimated to be quite similar (12% increase) to conventional steam reforming systems and the levelized cost of hydrogen is very competitive (2.27 USD/kgH2).  相似文献   

5.
In this paper, an integrated solid oxide fuel cell (SOFC) and biomass gasification system is modeled to study the effect of gasification agent (air, enriched oxygen and steam) on its performance. In the present modeling, a heat transfer model for SOFC and thermodynamic models for the rest of the components are used. In addition, exergy balances are written for the system components. The results show that using steam as the gasification agent yields the highest electrical efficiency (41.8%), power-to-heat ratio (4.649), and exergetic efficiency (39.1%), but the lowest fuel utilization efficiency (50.8%). In addition, the exergy destruction is found to be the highest at the gasifier for the air and enriched oxygen gasification cases and the heat exchanger that supplies heat to the air entering the SOFC for the steam gasification case.  相似文献   

6.
Coal gasification system integrated with solid oxide fuel cell (SOFC) provides a promising energy conversion way owing to its high efficiency. To get a deep insight into the energy performance of this system, a thermodynamic evaluation is implemented. Meanwhile, the technologies of chemical looping and CO2 sorption are introduced into this integration system. It is found that the addition of oxygen carrier and sorbent into coal gasification system can promote the output power of the SOFC with a higher exergy destruction, where the exergy efficiency of most modules in the system can reach 80% except tar separation. The results also reveal that a suitable improvement of gasifying agent amount is beneficial to the energy performance of the system. When the H2O/C molar ratio is increased to 3.0, the SOFC exergy efficiency of 97% can be achieved.  相似文献   

7.
A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV).  相似文献   

8.
In this study, two types of biomass (Acorus calamus leaves and wheat straw) were added to a matrix of sediment and soil inside the anode of solid phase microbial fuel cells (SMFCs) in order to increase their output power. SMFC containing 3% leaves in their sediment had a maximum power density of 195 mW m−2 in contrast to 4.6 mW m−2 of that SMFC without leaves. Similarly, SMFC containing 1% wheat straw in their soil environment had a maximum power density of 167 mW m−2. It suggests that the addition of biomass in appropriate proportions increases contact opportunities between the matrix, the anode and the added biomass, increases organic matter content, and enhances cellulase activity, thus serving as an important method for enhancing output power in SMFCs.  相似文献   

9.
An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis.It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1.  相似文献   

10.
The aim of this work was to experimentally assess the feasibility of feeding real biomass product gas to solid oxide fuel cells (SOFC) for efficient and clean power production. The impact of tars on Ni-GDC anode was the main focus of the experiments. Planar SOFC membranes were operated at two gasification sites: (a) autothermal fixed-bed downdraft gasifier and (b) allothermal bubbling fluidized bed gasifier. In all cases the gas was hot-cleaned from particulates, HCl and H2S.  相似文献   

11.
To further develop solid oxide regenerative fuel cell (SORFC) technology, the effect of gas diffusion in the hydrogen electrode on the performance of solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) is investigated. The hydrogen electrode-supported cells are fabricated and tested under various operating conditions in both the power generation and hydrogen production modes. A transport model based on the dusty-gas model is developed to analyze the multi-component diffusion process in the porous media, and the transport parameters are obtained by applying the experimentally measured limiting current data to the model. The structural parameters of the porous electrode, such as porosity and tortuosity, are derived using the Chapman–Enskogg model and microstructural image analysis. The performance of an SOEC is strongly influenced by the gas diffusion limitation at the hydrogen electrode, and the limiting current density of an SOEC is substantially lower than that of an SOFC for the standard cell structure under normal operating conditions. The pore structure of the hydrogen electrode is optimized by using poly(methyl methacrylate) (PMMA), a pore-forming agent, and consequently, the hydrogen production rate of the SOEC is improved by a factor of greater than two under moderate humidity conditions.  相似文献   

12.
Chemical looping gasification (CLG) can achieve the utilization of solid fuels for syngas production. The CLG system integrated with solid oxide fuel cell (SOFC) is a promising energy conversion way. In this work, an integration system of CLG and SOFC is evaluated via the implementation of a multi-field coupling modelling, where the products from the CLG are directly transported into the SOFC as the fuel and the coke deposition effect on the cell performance is evaluated. The results reveal that SOFC temperature using pure hydrogen as fuel has an increase of around 4 K compared to that with gas mixture as fuel owing to the inhibition of carbon deposition. It is found that the arrangement of anode and cathode in the countercurrent mode can promote the overall uniformity of current density compared to that in the cocurrent flow. Moreover, the impact of operating parameter of the CLG system on the SOFC performance is also examined. The results demonstrate that the increase of fuel reactor (FR) temperature and H2O/C molar ratio in the CLG system is beneficial to the inhibition of carbon deposition and the enhancement of the SOFC performance.  相似文献   

13.
This paper presents a novel system for production of pure oxygen based on the integration of a solid oxide fuel cell (SOFC) and a solid oxide electrolyzer (SOEC). In the proposed arrangement, the SOFC provides electricity, heat and H2O in vapour phase to the SOEC which carries out the inverse reactions of the SOFC, that is the separation of H2O into H2 (used as a fuel for the SOFC) and O2 (representing the yield of the system). Simulations carried out in different operating conditions show that when the integrated SOFC–SOEC device runs at low current densities (less than 1000 A m−2), pure oxygen can be generated with an electric consumption comparable to mid-size cryogenic air separation units, and significantly lower than small scale systems based on the PSA technology.  相似文献   

14.
Solid oxide fuel cell (SOFC) is a potential technology for utilizing biomass to generate electricity with high conversion efficiency and low pollution. Investigations on biomass integrated gasification SOFC system show that gasifier is one of the high cost factors which impede the practical application of such systems. Direct carbon solid oxide fuel cell (DC-SOFC) may provide a cost effective option for electricity generation from biomass because it can operate directly using biochar as the fuel so that the gasification process can be avoided. In this paper, the feasibility of using corn cob char as the fuel of a DC-SOFC to generate electricity is investigated. Electrolyte-supported SOFCs, with yttrium stabilized zirconia (YSZ) as the electrolyte, cermet of silver and gadolinium-doped ceria (GDC) as the anode and the cathode, are prepared and tested with fixed bed corn cob char as fuel and static ambient air as oxidant. The maximum power output of a DC-SOFC operated on pure corn cob char is 204 mW cm−2 at 800 °C and it achieves 270 mW cm−2 when Fe of 5% mass fraction, as a catalyst of the Boudouard reaction, is loaded on the corn cob char. The discharging time of the cell with 0.5 g corn cob char operated at a constant current of 0.1 A lasts 17 h, representing a fuel conversion of 38%. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Raman spectroscopy have been applied to characterize the char-based fuels.  相似文献   

15.
The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm−2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.  相似文献   

16.
An isothermal 2-D transient model is developed for an anode-supported solid oxide fuel cell. The model takes into account the transient effects of both charge migration and species transport in PEN assembly. Due to the lack of transient experimental data, the transient model, under steady state operating conditions, is validated using experimental results from open literature. Numerical results show that the cell can obtain very quick transient current response when subjected to a step voltage change, followed by a slow current transient period due to species diffusion effects within porous electrodes. It is also found that the transient response of the cell current is sensitive to oxygen concentration change at cathode/channel interface, whereas the current response is slow when step change of hydrogen concentration is applied at anode/channel interface. The cell transient performance can be improved by increasing porosity or decreasing tortuosity of electrodes.  相似文献   

17.
A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired hydrocarbon fuel and avoiding damage to the cells. The main parameters of cell operating temperature, pressure, inlet gas composition and reactant utilization are varied to examine how they influence cell thermoneutral and reversible potentials, in situ formation of methane and carbon at the Ni–YSZ electrode, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher reactant utilization. Optimal operating conditions are dependent on the total system design.  相似文献   

18.
建立了基于热力学平衡的生物质气化模型,利用平衡模型分析了气化过程的特性,研究了气化过程的反应规律及各种因素对气化性能指标的影响,详细分析了当量比及物料湿度对气体产物成分及气化产物热值的影响.同时,建立了以生物质气为燃料的固体氧化物燃料电池的数学模型,该模型考虑了燃料电池的能斯特电动势及各种极化损失.利用建立的模型分析了操作参数以及物料湿度和生物质种类对生物质气化—燃料电池发电系统性能的影响.结果表明,生物质气化—燃料电池发电系统的发电效率可达30%,热电联产效率最高可达95%以上.  相似文献   

19.
Direct carbon solid oxide fuel cells (DC-SOFCs) are recognized as an efficient energy conversion device. With regard to their operation mechanism, the reverse Boudouard reaction rate is the crucial factor influencing cell performance. In this work, a new-type catalyst derived from industrial barium slag (BS) was first developed to enhance the reverse Boudouard reaction and DC-SOFC performance. The chemical composition and micro-morphologies of BS and barium slag-derived catalyst (BSC) were characterized in detail. The superiorities of BS and BSC were reflected in the enhanced DC-SOFC performance and high fuel utilization. The single cell fueled by BSC-loaded carbon yielded the best output of 249 mW cm−2 at 850 °C. This result was comparable to the 266 mW cm−2 output of a hydrogen-fueled SOFC due to the superior catalytic activity of metallic catalysts toward carbon gasification. The advantage of the BSC was also observed in the durable operation of the corresponding DC-SOFCs, which lasted for 36.2 h at 50 mA with the fuel utilization of 29.0%. This work provides a new channel for green and efficient utilization of BS and other industrial residues, and a novel option to the development of energy conversion technology.  相似文献   

20.
The aim of the paper is to investigate possible improvements in the geometry design of a monolithic solid oxide fuel cells (SOFCs) through analysis of the entropy generation terms. The different contributions to the local rate of entropy generation are calculated using a computational fluid dynamic (CFD) model of the fuel cell, accounting for energy transfer, fluid dynamics, current transfer, chemical reactions and electrochemistry. The fuel cell geometry is then modified to reduce the main sources of irreversibility and increase its efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号