首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The effects of austenite spacing, hydrogen charging, and applied tensile strain on the local Volta potential evolution and micro-deformation behaviour of grade 2507 (UNS S32750) super duplex stainless steel were studied. A novel in-situ methodological approach using Digital Image Correlation (DIC) and Scanning Kelvin Probe Force Microscopy (SKPFM) was employed. The microstructure with small austenite spacing showed load partitioning of tensile micro-strains to the austenite during elastic loading, with the ferrite then taking up most tensile strain at large plastic deformation. The opposite trend was seen when the microstructure was pre-charged with hydrogen, with more intense strain localisation formed due to local hydrogen hardening. The hydrogen-charged microstructure with large austenite spacing showed a contrasting micro-mechanical response, resulting in heterogeneous strain localisation with high strain intensities in both phases in the elastic regime. The austenite was hydrogen-hardened, whereas the ferrite became more strain-hardened. SKPFM measured Volta potentials revealed the development of local cathodic sites in the ferrite associated with hydrogen damage (blister), with anodic sites related to trapped hydrogen and/or micro voids in the microstructure with small austenite spacing. Discrete cathodic sites with large Volta potential variations across the ferrite were seen in the coarse-grained microstructure, indicating enhanced susceptibility to micro-galvanic activity. Microstructures with large austenite spacing were more susceptible to hydrogen embrittlement, related to the development of tensile strains in the ferrite.  相似文献   

2.
3.
In this paper, we describe a case-study exploring the use of 600 MW of power from New Zealand's Manapouri Power Station to produce hydrogen for export via water electrolysis. Three H2 carriers were considered: liquid H2, ammonia, and toluene hydrogenation/methylcyclohexane dehydrogenation. Processes were simulated in Aspen's HYSYS for each of the carriers to determine their associated energy and annualised capital expenditure costs. We found that the total capital investment for all carriers was surprisingly consistent, but with quite different splits between the electrolysis and carrier formation plants. Based on our analysis the energy availability for liquid H2 ranged from 53.9 to 60.7% depending on the energy cost associated with cryogenic H2 liquefaction. The energy availability for liquid ammonia was 37.5% after conversion back to H2, or 53.6% if the ammonia can be used directly as a fuel. For toluene/methylcyclohexane the energy availability was 41.2%. The total of the electricity and annualised capital costs per kg of H2 ranged from NZ$5.63 to NZ$6.43 for liquid H2, NZ$6.24 to NZ$8.91 for ammonia and was NZ$7.86 for toluene/methylcyclohexane, using a net electricity cost of NZ$70/MWh. The cost of hydrogen (or energy in the case of direct use ammonia) was more strongly influenced by the efficiency of energy retention than on capital investment, as the electricity costs contributed approximately two thirds of total costs. In the long-term, liquid hydrogen looks to be the most versatile H2 carrier, but significant infrastructure investment is required.  相似文献   

4.
Hydrogen absorption in thin metal films clamped to rigid substrates results in mechanical stress that changes the hydrogen's chemical potential by ΔμH(σ) = −1.124σ kJ/molH for σ measured in [GPa]. In this paper we show that local stress relaxation by the detachment of niobium hydrogen thin films from the substrate affects the chemical potential on the local scale: using coincident proton–proton scattering at a proton microprobe, the hydrogen concentration is determined with μm resolution, revealing that hydrogen is not homogenously distributed in the film. The local hydrogen solubility of the film changes with its local stress state, mapping the buckled film fraction. In niobium hydrogen thin films loaded up to nominal concentrations in the two-phase coexistence region, the clamped film fraction remains in the solid solution phase, while the buckles represent the hydride phase. These results are compared to a simple model taking the stress impact on the chemical potential into account.  相似文献   

5.
The hydrogen trap sites and corresponding hydrogen binding energies in an Al–Cu–Mg alloy with the different microstructures were investigated to unravel the environmental hydrogen embrittlement (HE) behavior of the alloy. The results showed that hydrogen can reside at interstitial lattices, dislocations, S′-phase, and vacancies. In the aged specimen with the highest hydrogen content, it was firstly reported that hydrogen resided at S′-phase particles with relatively high binding energy, which is a determinant factor on HE resistance of the alloy. In the cold-rolled specimen, high content of hydrogen trapped at dislocations with a reversible nature leads to intergranular hydrogen-assisted cracking. In the solution-treated specimen, hydrogen migration to the surface due to low trap density results in low hydrogen content and prevents the GBs from reaching critical hydrogen concentration. The obtained results clearly reveal that trap site density, and the nature of trap sites can determine environmental HE susceptibility of the alloy.  相似文献   

6.
Hydrogen embrittlement (HE) induced by hydrogen permeation is a serious threat to the hydrogen transmission pipeline. In this study, oxide films were prepared on X80 steel by applying high-temperature oxidation, blackening treatment and passivation in concentrated H2SO4, and their effects on hydrogen permeation and HE susceptibility of X80 substrate were studied by conducting hydrogen permeation tests and slow strain rate tension (SSRT) tests. A numerical diffusion model was established to quantitatively determine the resistance of these oxide films to hydrogen permeation. Results showed that the oxide film prepared by high-temperature oxidation presented the highest resistance to hydrogen permeation with the ?m/?f value of 3828, and the corresponding HE index decreased from 38.07% for bare X80 steel to only 4.00% for that covered with oxide film. The characteristic of the corresponding fracture surfaces changed from brittle features such as quasi cleavage facets and secondary cracks to typical ductile dimple feature.  相似文献   

7.
This study presents the degree of promotion of deformation-induced γ?ε martensitic transformation by hydrogen charging and the associated fracture behavior at various strain rates ranging from 10?5 to 10?2 s?1. A decrease in the strain rate from 10?2 to 10?5 s?1 promotes the deformation-induced γ?ε martensitic transformation regardless of hydrogen charging (65%→82% in area fraction for uncharged specimens, 68%→84% for hydrogen-charged specimens). Hydrogen charging, which provides 11.7 mass ppm hydrogen concentration, further promotes the γ?ε martensitic transformation. However, the degree of promotion of the transformation by hydrogen is insensitive to the strain rate. Corresponding to the promotion of the γ?ε martensitic transformation, the hydrogen embrittlement susceptibility increases with a decrease in the strain rate. For instance, the elongation of the hydrogen-charged specimens decreases from 36 to 32% by decreasing strain rate from 10?2 to 10?5 s?1. Hydrogen uptake deteriorates the resistance to crack initiation and propagation. Furthermore, the primary effect of the decrease in strain rate on hydrogen embrittlement is the acceleration of the crack propagation. In addition to the promotion of γ?ε martensitic transformation, a decrease in the strain rate in the presence of hydrogen may cause hydrogen localization at the crack tip, which assists brittle-like martensite cracking.  相似文献   

8.
An API X70 pipeline steel has been investigated with respect to hydrogen diffusion and fracture mechanics properties. A finite element cohesive element approach has been applied to simulate the onset of hydrogen-induced fracture. Base metal, weld simulated heat affected zone and weld metal have been investigated. The electrochemical permeation technique was used to study hydrogen diffusion properties, while in situ fracture mechanics testing was performed in order to establish the hydrogen influenced threshold stress intensity. The average effective diffusion coefficient at room temperature was 7.60 × 10−11 m2/s for the base metal, 4.01 × 10−11 m2/s for weld metal and 1.26 × 10−11 m2/s for the weld simulated heat affected zone. Hydrogen susceptibility was proved to be pronounced for the heat affected zone samples. Fracture toughness samples failed at a net section stress level of 0.65 times the yield strength; whereas the base metal samples did not fail at net section stresses lower than the ultimate tensile strength. The initial cohesive parameters which best fitted the experimental results were σc = 1500 MPa (3.1·σy) for the base metal, σc = 1800 MPa (3.0·σy) for weld metal and σc = 1840 MPa (2.3·σy) for heat affected zone. Threshold stress intensities KIc,HE were in the range 143–149 MPa√m.  相似文献   

9.
We study the effect of grain size of austenitic and ferritic phases and volume fraction of δ-ferrite, which were obtained in different solution-treatment regimes (at 1050, 1100, 1150 and 1200 °C), on hydrogen embrittlement of high-nitrogen steel (HNS). The amount of dissolved hydrogen is similar for the specimens with different densities of interphase (γ-austenite/δ-ferrite) and intergranular (γ-austenite/γ-austenite, δ-ferrite/δ-ferrite) boundaries. Despite, the susceptibility of the specimens to hydrogen embrittlement, depth of the hydrogen-assisted surface layers, hydrogen transport during tensile tests and mechanisms of the hydrogen-induced brittle fracture all depend on grain size and ferrite content. The highest hydrogen embrittlement index IH = 32%, the widest hydrogen-affected layer and a pronounced solid-solution hardening by hydrogen atoms is typical of the specimens with the lowest fraction of the boundaries. Even though fast hydrogen transport via coarse ferritic grains provides longer diffusion paths during H-changing, the width of the H-affected surface layer in the dual-phase structure of the HNS specimens is mainly determined by the hydrogen diffusivity in austenite. In tension, hydrogen transport with dislocations increases with the decrease in density of boundaries due to the longer dislocation free path, but stress-assisted diffusion transport does not depend on grain size and ferrite fraction. The contribution from intergranular fracture increases with an increase in the density of intergranular and interphase boundaries.  相似文献   

10.
In this paper, the effects of high temperature deformation on the microstructure, mechanical properties and hydrogen embrittlement (HE) of the 2.25Cr–1Mo-0.25 V steel was investigated by a scanning electron microscope (SEM), a transmission electron microscope (TEM) and tensile tests. The SEM and TEM images demonstrated that high temperature plastic deformation (HTPD) led to the coarsening of carbides and the dislocation density increase. The tensile tests displayed that the HTPD resulted in the cracking susceptibility increase, as indicated by the increased numbers and sizes of cracks at the fractured surface. This was attributed to the coarsening of carbides during high temperature deformation. In contrast, the HTPD highly decreased the loss of ductility compared to the un-deformed specimens, although the amount of ductility losses (elongation or reduction of area) did not change significantly as the HTPD increased. The correlations among carbides, hydrogen and cracks were discussed.  相似文献   

11.
A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H2 at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H2 production, (3) 25% CPV driven molten electrolysis H2 production, and (4) 35% CPV driven solid oxide electrolysis H2 production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from $5.74 to $4.96 to $3.01 to $2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H2/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi2 in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and gate costs.  相似文献   

12.
Although electrochemical permeation tests are used to determine the diffusion coefficients of hydrogen through metals, these measures are affected by various phenomena such as trapping or surface states. In this work, we analyzed the combined effects on diffusion of hydrogen trapping and the presence of an oxide layer at the exit side of the material. We numerically simulated the diffusion of hydrogen through a 1 mm thick martensitic steel membrane, using Finite Elements Method. Trapping densities are taken between 10−4 and 100 mol/m3, for an oxide layer 5 nm thick. We studied oxide layers with hydrogen diffusion coefficients between 10−21 and 10−10 m2/s. It appears that the diffusion is withheld by trapping and the oxide layer. However both parameters exhibit opposite effects on hydrogen subsurface concentrations; analytical equations have been proposed to correct the experimental results obtained by electrochemical permeation tests, using the material properties. It appears that the ratios between the membrane and the oxide diffusion coefficients and thicknesses guide the influence of trapping and the oxide layer.  相似文献   

13.
As fuel cell vehicles approach wide-scale deployment, the issue of the quality of hydrogen dispensed to the vehicles has become increasingly important. The various factors that must be considered include the effects of different contaminants on fuel cell performance and durability, the production and purification of hydrogen to meet fuel quality guidelines, and the associated costs of providing hydrogen of that quality to the fuel cell vehicles. In this paper, we describe the development of a model to track the formation and removal of several contaminants over the various steps of hydrogen production by steam-methane reforming (SMR) of natural gas, followed by purification by pressure-swing adsorption (PSA). We have used the model to evaluate the effects of setting varying levels of these contaminants in the product hydrogen on the production/purification efficiency, hydrogen recovery, and the cost of the hydrogen. The model can be used to track contaminants such as CO2, CO, N2, CH4, and H2S in the process. The results indicate that a suggested specification of 0.2 ppm CO would limit the maximum hydrogen recovery from the PSA under typical design and operating conditions. The steam-to-carbon ratio and the process pressure are found to have a significant impact on the process efficiency. Varying the CO specification from 0.1 to 1 ppm is not expected to affect the cost of hydrogen significantly, although the cost of gas analysis to comply with such stringent requirements may add 2–10 cents/kg to the cost of hydrogen.  相似文献   

14.
15.
The measurement units of yearly wind electricity and hydrogen production in the following sections of the previously published paper as titled above are now changed from (MWh/year and kTon/year) to (GWh/year and tons/year). These changes apply to all the measuring units in text and related tables of the following sections. All the results of this paper are still valid and unchanged.  相似文献   

16.
A series of ternary alloys of general formula SmNi5−xGax (x = 0.25, 0.5, 1.5, 2, 2.5) was prepared by melting mixtures of Sm, Ni and Ga in arc furnace under argon. From X-ray powder diffraction lattice parameters are determined and it is found that hexagonal structure of P6/mmm space group is retained for all considered values of x. Hydrogen absorption ability and thermodynamic quantities of the systems are determined by pressure-composition desorption isotherms. The obtained properties are compared with those of previously reported SmNi5 and SmNi4Ga. DFT calculations were performed for selected members of the system and the results are discussed with regard to experiment.  相似文献   

17.
In the article published by Qadrdan et al. in INT J HYDROGEN ENERG 40 (2015) 5763–5775, the role of power-to-hydrogen in the GB's combined gas and electricity network (CGEN) was presented. The purpose of this comment is to point out the errors associated with the CGEN's unsteady-state gas model. No agreement can be found when one compares the proposed modelling approach with the governing (continuity and momentum) equations. The selected base-length, and initial/boundary conditions were not described by the authors. No mathematical proof and model validation (with available software packages) were presented for their proposed approach. In addition, the authors did not consider the change of hydrogen concentration along the pipes and its impact on the gas density and heating value.  相似文献   

18.
In situ neutron diffraction was undertaken on stoichiometric 2LiBD4 : MgD2 and non-stoichiometric 0.3LiBD4:MgD2 with both ratios decomposed under 1 bar deuterium and under dynamic vacuum. The subsequent cycling behaviour under 100 bar D2 at 400 °C was investigated in situ. Analysis of the uptake through formation of deuterided products showed fast kinetics for the magnesium rich system, 0.3:1, with 90% deuteriding occurring within 10 min. This compares to only 60% deuteriding for the 2:1 sample after 4 h under similar conditions. These results demonstrate the strong influence of stoichiometry in the cycling kinetics compared to decomposition conditions, although the later determines the phase progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号