首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm2 (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm2 at 1.23 VRHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation.  相似文献   

2.
Abstract

Abstract

Thin films of anatase TiO2 nanotube arrays (TiO2 NTs) were prepared in this study. Pt and Ag were coated on the TiO2 NTs films, which intend to increase the photocatalytic activity under ultraviolet-visible (UV-vis) irradiation. The phase and structure of the films were investigated by X-ray diffraction and scanning electron microscopy. Photocatalytic activity was tested by UV-vis absorption spectroscopy and showed that UV-vis light absorption of the films was remarkably improved by coated Ag and Pt by 72% and 183% respectively. The photocatalytic activities of the films towards degraded methyl orange and HCHO were compared and were all found to follow the sequence Pt/TiO2 NTs>Ag/TiO2 NTs>TiO2 NTs. It was also found that the kinetics of HCHO photocatalytic degradation by the films fits the first order reaction model better and has higher efficiency than that of the methyl orange photocatalytic degradation by the same films.  相似文献   

3.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

4.
The use of hydrogen as an energy carrier is an attractive solution toward addressing global energy issues and reducing the effects of climate change. Design of new materials with high hydrogen sorption capacity and high stability is critical for hydrogen purification and storage. In this study, titanium dioxide nanotubes (TiO2NTs) were modified with palladium nanoparticles (PdNPs) utilizing a facile photo-assisted chemical deposition approach. Electrochemical anodization was employed for the direct growth of TiO2NTs. The PdNP functionalized TiO2NTs (TiO2NT/Pd) were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The hydrogen sorption behaviours and stability of the TiO2NT/Pd nanocomposites were investigated and compared with nanoporous Pd networks that were deposited on a bulk titanium substrate (Ti/Pd) using cyclic voltammetry (CV) and chronoamperometry (CA). Our studies show that the TiO2NT/Pd nanocomposites possess a much higher hydrogen storage capacity, faster kinetics for hydrogen sorption and desorption, and higher stability than the nanoporous Pd.  相似文献   

5.
In this study Pt–TiO2 binary electrodes were prepared by means of thermal decomposition of chloride precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the Pt loading without electrocatalytic activity losses was also explored. TiO2 was chosen due to its chemical stability, low cost and excellent properties as substrate for Pt dispersion. It was found that TiO2 loading up to 50% results in Electrochemically Active Surface (EAS) increase. The EAS of Pt(50%)-TiO2(50%) was found to be almost one order of magnitude higher than that of pure Pt while the EAS of samples with Pt loading lower than 30% was negligible. The above conclusion has been confirmed both by following the charge of the reduction peak of platinum oxide and by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol and ethanol. In both cases the Pt(50%)-TiO2(50%) electrode had better electrocatalytic activity than the pure Pt anode. The observed higher performance of the binary electrodes was mainly attributed to the enhanced Pt dispersion as well as the formation of smaller Pt particles by the addition of TiO2.  相似文献   

6.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

7.
8.
Huge efforts have been done in the last years on electrochemical and photoelectrochemical reduction of CO2 to offer a sustainable route to recycle CO2. A promising route is to electrochemically reduce CO2 into CO which, by combination with hydrogen, can be used as a feedstock to different added-value products or fuels. Herein, perpendicular oriented TiO2 nanotubes (NTs) on the electrode plate were grown by anodic oxidation of titanium substrate and then decorated by a low loading of silver nanoparticles deposited by sputtering (i.e. Ag/TiO2 NTs). Due to their quasi one-dimensional arrangement, TiO2 NTs are able to provide higher surface area for Ag adhesion and superior electron transport properties than other Ti substrates (e.g. Ti foil and TiO2 nanoparticles), as confirmed by electrochemical (CV, EIS, electrochemical active surface area) and chemical/morphological analysis (FESEM, TEM, EDS). These characteristics together with the role of the TiO2 NTs to enhance the stability of CO2·- intermediate formed due to titania redox couple (TiIV/TiIII) lead to an improvement of the CO production in the Ag/TiO2 NTs electrodes. Particular attention has been devoted to reduce the loading of noble metal in the electrode(14.5 %w/%w) and to increase the catalysts active surface area in order to decrease the required overpotential.  相似文献   

9.
The CdS/TiO2 composites were synthesized using titanate nanotubes (TiO2NTs) with different pore diameters as the precursor by simple ion change and followed by sulfurization process at a moderate temperature. Some of results obtained from XRD, TEM, BET, UV–vis and PL analysis confirmed that cadmium sulfide nanoparticles (CdSNPs) incorporated into the titanium dioxide nanotubes. The photocatalytic production of H2 was remarkably enhanced when CdS nanoparticles was incorporated into TiO2NTs. The apparent quantum yield for hydrogen production reached about 43.4% under visible light around λ = 420 nm. The high activity might be attributed to the following reasons: (1) the quantum size effect and homogeneous distribution of CdSNPs; (2) the synergetic effects between CdS particles and TiO2NTs, viz., the potential gradient at the interface between CdSNPs and TiO2NTs.  相似文献   

10.
A TiO2 nanotube-based nanoreactor was designed and fabricated by facile two steps synthesis: firstly, hydrothermal synthesized SrTiO3 was deposited on TiO2 nanotubes (TiO2NTs). Secondly, the Au nanoparticles (NPs) were encapsulated inside the TiO2NTs followed by vacuum-assisted impregnation. The as-synthesized composites were characterized using Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Photoluminescence spectra (PL) and Ultraviolet–visible absorption spectroscopy (UV–vis). The photocatalytic performance was evaluated by the hydrogen evolution reaction. The results revealed that the SrTiO3 modified TiO2NTs confined Au NPs (STO-TiO2NTs@Au) achieved an enhanced hydrogen evolution rate at 7200 μmol h−1 g−1, which was 2.2 times higher than that of bald TiO2NTs@Au at 3300 μmol h−1 g−1. The improved photocatalytic activity could be attributed to the synergistic effect of the electron-donating of SrTiO3 and TiO2NTs confinement. The as-designed nanoreactor structure provides an example of efficient carriers' separation photocatalyst.  相似文献   

11.
For the working electrode of dye-sensitized solar cell (DSC), TiO2/SiO2 nanocomposite materials were electrodeposited on transparent fluorine doped tin oxide-coated glass by cathodic electrodeposition at room temperature. The electrode and DSC fabricated with TiO2/SiO2 nanocomposite were characterized with photocurrent density, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and a photovoltaic performance test. On the electrodeposition, the addition of an appropriate amount of SiO2 in the bath containing TiO2 slurry was essential to achieve the superior crystallinity, photocurrent density and photovoltaic performance of the resulting TiO2/SiO2 electrode, which was significantly superior to a bare TiO2 electrode. This enhanced performance of optimized TiO2/SiO2 electrode was ascribed to the role of SiO2 as an energy barrier, increasing the physical separation of injected electrons and oxidized dyes/redox couple, and thereby retarding the recombination reactions in the resulting DSC.  相似文献   

12.
Titanium dioxide (TiO2) has been widely used with UV light to degrade organic waste contaminants. Immobilised layers of TiO2 on electrode surfaces have shown enhanced activity when appropriate potentials have been applied. In this work, it is shown that a novel immobilised layer of TiO2 on an electrode, a TiO2/poly(vinylchloride) composite cast from THF, mineralises acetone or starch when exposed to a xenon arc light only if the electrode is connected to a Pt electrode where concomitant reduction of oxygen occurs. When an isolated electrode with an immobilised TiO2 layer is exposed to UV light in a solution of starch or acetone, no decrease in acetone or starch concentration is observed.  相似文献   

13.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

14.
Highly-ordered TiO2 nanotube arrays (TNTAs) were fabricated on Ti sheets by electrochemical anodization. Uniform Pt nanoparticles with an average diameter of 3 nm could be successfully located on the TiO2 nanotubes on only one side (Pt/TNTAs) or both sides of the Ti sheet (Pt/TNTAs/Pt). Pt/TNTAs, the single-sided Pt deposited TNTAs, could be directly used to split water without a counter electrode. The hydrogen evolution rate can reach 120 μmol h−1 cm−2 in a mixed solution of 0.5 M Na2SO4 and 0.5 M ethylene glycol without any applied bias, which is six times of that by the pure TNTAs. In comparison to the traditional three electrode system, this single-sided Pt deposited TNTAs is a much more simple and efficient water splitting system. Meanwhile, the photoelectrical conversion mechanism has been investigated in detail.  相似文献   

15.
Metal organic frameworks (MOFs) have attracted tremendous attention in recent years owing to their high-specific surface area (SSA) and variable porous structures. Owing to the strong interaction between Pt and CeO2, Pt combined steadily with CeO2. Furthermore, the surface of CeO2 can activate water to produce hydroxyl groups, which can accelerate the removal of catalytic intermediate CO. But the bad conductivity of metal oxide is still a huge obstacle. More importantly, utilizing TiN with excellent conductivity as support can strengthen conductivity of catalyst and improve catalytic activity. Herein, a novel Pt-CeO2/TiN Nanotubes (TiN NTs) catalysts derived from Ce-MOF was fabricated for the first time. In the synthesis process of the targeted catalyst, the compounds of Ce-MOF and TiN NTs was prepared via the hydrothermal method and post-nitriding treatment, and implemented as the Pt support. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption/desorption and electrochemical measurements were carried out to characterize the catalyst. Notably, the peak current density of Pt-CeO2/TiN NTs (0.67 A mg−1Pt) was approximately 3 times higher than Pt/C (0.28 A mg−1Pt) during methanol oxidation test, showing the exceptional properties toward methanol oxidation reaction (MOR). Remarkably, electrochemical testing data verified the superior tolerance to CO and enhanced catalytical activity of Pt-CeO2/TiN NTs and it could be attributed to the porous structures and the interaction between TiN NTs and CeO2.  相似文献   

16.
The adsorption and dissociation of H2O on clean TiO2(110) and metal-deposited M/TiO2(110) (M = Pt and Au) surfaces were studied by performing calculations of periodic density-functional theory. M/TiO2(110) surfaces catalytically decompose H2O with barriers (decreased by ca. 15–19 kcal/mol) much smaller than for their clean TiO2(110) counterparts. The Au-deposited TiO2 surface has the least energy barrier (ca. 3.5 kcal/mol less than the Pt analogue), explicable with a Bader charge analysis.  相似文献   

17.
In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, SBET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique.The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique.Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts.Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential.Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst.The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity.  相似文献   

18.
CuO/TiO2 photocatalysts were prepared and shown to enhance the rate of CO2 photoreduction and the production of total organic carbon (TOC), including HCOOH, HCHO and CH3OH. Resulting TOC could act as electron donors for enhancing visible light hydrogen evolution from Pt/TiO2 photocatalysts. The impacts on CO2 photoreduction were investigated including the effect of Cu dopant, pH, irradiation time and using Na2SO3 as a sacrificial agent, and those on hydrogen evolution was also studied including TOC concentration and Pt doping. The CO2 photoreduction mechanisms with respect to pH and CO2 reduction potentials were discussed. CuO/TiO2 and Pt/TiO2 photocatalysts were characterized by X-ray diffraction, Raman spectroscopy and diffuse reflection UV-vis spectrophotometry. Both photocatalysts showed a visible light response in comparison with pure TiO2. The photocatalytic experiments and FT-IR spectra indicated that photoproduct desorption was the rate-limiting step in the CO2 photoreduction.  相似文献   

19.
Highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of Ti foil under different anodization voltages in ethylene glycol electrolyte. The morphology and photoelectrochemical performance of the TiO2 nanotubes (NTs) samples were characterized by FESEM and electrochemical working station. Hydrogen production was measured by splitting water in the two-compartment photoelectrochemical (PEC) cell without any external applied voltage or sacrificial agent. The results indicated that anodization voltage significantly affects morphology structures, photoelectrochemical properties and hydrogen production of TiO2 NTs. The pore diameter and layer thickness of TiO2 samples increased linearly with the anodization voltage, which led to the enhancement of active surface area. Accordingly, the photocurrent response, photoconversion efficiency and hydrogen production of TiO2 nanotubes were also linearly correlated with the anodization voltage.  相似文献   

20.
ZnS–In2S3–Ag2S solid solution coupled with TiO2-xSx nanotubes film catalyst has been successfully prepared by a two-step process of anodization and solvothermal methods for the first time. The as-prepared photo-catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Visible diffuse reflectance spectra (UV–Vis DRS), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. The results show that the ZnS–In2S3–Ag2S solid solution are deposited on the surface of TiO2NTs nanotubes under the solvothermal conditions, by which S atoms are incorporated into the lattice of TiO2 through substituting the sites of oxygen atoms. Such ZnS–In2S3–Ag2S@TiO2-xSx nanotubes composite presents the enhanced absorption in visible region and the efficient transfer of photoelectron between the solid solution and TiO2-xSx nanotubes, which determines the excellent photocatalytic activity for the photocatalytic hydrogen evolution from aqueous solutions containing the sacrificial reagents of Na2S and Na2SO3 under 500 W Xe lamp irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号