首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In order to study how PBI membranes influence the operation of HT-PEFC cathode we analyse the performance of HT-PEFC based on three different PBI membrane types (meta-PBI, ABPBI and PBI-O-PhT) by means of stationary voltamperometry and impedance spectroscopy. For impedance spectra interpretation we use an equivalent circuit containing transmission line distributed element. This approach allows us to measure the distributed ohmic resistance of proton transport inside cathode catalyst layer. It is shown that this resistance depends on the membrane type used and has even more pronounced influence on the FC performance than ohmic resistance of the membrane itself.  相似文献   

2.
Polarization losses of the fuel cells with different residual water amount frozen at subzero temperature were investigated by electrochemical impedance spectroscopy (EIS) taking into account the ohmic resistance, charge transfer process, and oxygen mass transport. The potential-dependent impedance before and after eight freeze/thaw cycles suggested that the ohmic resistance did not change, while the change of the charge transfer resistance greatly depended on the residual water amount. Among the four cells, the mass transport resistance of the cell with the largest water amount increased significantly even at the small current density region. According to the thin film-flooded agglomerate model, the interfacial charge transfer process and oxygen mass transport within the agglomerate and through the ionomer thin film in the catalyst layer both contributed to the high frequency impedance arc. From the analysis of the Tafel slopes, the mechanism of the oxygen reduction reaction (ORR) was the same after the cells experienced subzero temperature. The agglomerate diffusion changed a little in all cells and the thin film diffusion effect was obvious for the cell with the largest residual water amount. These results indicated that the slower oxygen diffusion within the catalyst layer (CL) was the main contributor for the evident performance loss after eight freeze/thaw cycles.  相似文献   

3.
Membrane electrode assembly (MEA) manufacturing parameters such as hot pressing pressure and pressing time were investigated for the use in a SO2 electrolyser. The SO2 electrolysis was optimised in terms of cell temperature, membrane thickness and catalyst loading. The electrolysis efficiency was evaluated using polarisation curves while electrochemical impedance spectroscopy (EIS) was used to determine the membrane resistance, activation energy and mass transport limitations. An electrical circuit, which included inductance, ohmic resistance, charge transfer, constant phase and Warburg elements, was used to fit the experimental data. The optimum hot pressing conditions were 50 kg cm−2 for 5 min at 120 °C. Increased cell temperature (80 °C) resulted in a reduction of mass transport, while thicker membranes resulted in an increased mass transport due to lower water transport through the membrane. Increased catalyst loading (from 0.3 to 1 mgPtC.cm−2) improved the cell performance due to improved kinetics confirmed by the EIS data.  相似文献   

4.
This paper presents a method for collecting ac impedance data from a commercial PEFC power system at operational loads. The PEM fuel cell stack in the power system, including 47 MEAs, was operated using room air and pure hydrogen (>99.99%). For a stack test in the power system, the power source for the embedded controller board was simultaneously switched from the fuel cell stack to a similar external power source after the system reached a steady temperature. The PEM fuel cells in the stack were tested by collecting the ac impedance data at different current levels. By using ac impedance, a single fuel cell, a group of fuel cells, and a complete stack were then tested without the embedded control devices for ohmic, activation, and mass transport losses. The ohmic resistance for each cell component in the stack was obtained as 117 mΩ cm2 at operational loads from 2.5 A to 35 A. The membrane thickness was further estimated as ca. 51–89 μm. Resistances from ohmic conduction, anode/cathode activation, and mass transport were measured and discussed using the Nyquist plots from the ac impedance spectra.  相似文献   

5.
A new performance study has been performed on a commercially available anode supported planar SOFC containing an LSCF cathode. The SOFC cell is tested at different temperatures and different cathode gas compositions. The temperature and cathode gas dependence on the electrochemical performance is studied using voltage-current density curves and impedance spectroscopy at different cell voltages. The cell tested shows excellent performance at all temperatures and is not limited by diffusion losses for the tested conditions. This new study indicates that the cell impedance spectroscopy is comprised of at least four semicircles of which two are partially dependent on the cathode gas conditions. It was found that historical effects play a role in the impedance spectra, showing some scatter in the ohmic resistance as a function of applied voltage. The cell ohmic resistance decreases as the temperature increases and as the cathode gas conditions are switched from air to O2-He mixture. However, the cell ohmic resistance under pure O2 was found to be higher than the O2-He mixture. In virtually all IS data, the cell ohmic resistance showed a maximum value around 0.8 V. The cell ohmic ASR shows that interfacial resistances are a significant portion of the total ohmic resistance. The total electrode polarization decreases as the temperature increases and as the cathode gas conditions are switched from air to O2-He mixture and to pure O2. Finally, the peak frequency of the largest semicircle observed at high frequency shows a linear dependence on the applied voltage in most cases. This behavior is related to the charge transfer that occurs in the high frequency range and indicates that the electrochemical reactions are occurring at faster rates as more current flows through the cell.  相似文献   

6.
This research investigates the optimal polytetrafluoroethylene (PTFE) content in the cathode gas diffusion layer (GDL) by evaluating the effect of compression on the performance of a proton exchange membrane (PEM) fuel cell. A special test fixture is designed to control the compression ratio, and thus the effect of compression on cell performance can be measured in situ. GDLs with and without a microporous layer (MPL) coating are considered. Electrochemical impedance spectroscopy (EIS) is used to diagnose the variations in ohmic resistance, charge transfer resistance and mass transport resistance with compression ratio. The results show that the optimal PTFE content, at which the maximum peak power density occurs, is about 5 wt% with a compression ratio of 30% for a GDL without an MPL coating. For a GDL with an MPL coating, the optimal PTFE content in the MPL is found to be 30% at a compression ratio of 30%.  相似文献   

7.
《Journal of power sources》2006,161(1):294-300
A numerical investigation of the coupled electrical conduction and mass diffusion in the cathodic GDL of a PEMFC is performed using 2D simulations. The current density on the GDL/catalyst layer interface, which constitutes one of the boundary conditions for the GDL domain and reflects the activation overpotential in the catalyst layer and the ohmic loss in the membrane, is solved iteratively using a novel numerical algorithm. A parametric study is performed to investigate the effects on current density distribution of various operating conditions such as oxygen concentration and membrane resistance, and of design factors such as GDL geometry, anisotropic transport properties, and deformation under the land area due to compression. The results show that the current density distribution under the land area can be dominated by either electron transport or mass transport, depending on the operating regime. The analysis of the in-plane current density gradients shows the contributions due to electrical conduction, oxygen diffusion and membrane resistance in an explicit form. The analysis also provides guidance for the scaling of the coupled transport problem.  相似文献   

8.
The gas diffusion layer (GDL) covered with a microporous layer (MPL) is being widely used in proton exchange membrane fuel cells (PEMFCs). However, the effect of MPL on water transport is not so clear as yet; hence, many studies are still being carried out. In this study, the effect of MPL on the performance degradation of PEMFCs is investigated in repetitive freezing conditions. Two kinds of GDL differentiated by the existence of MPL are used in this experiment. Damage on the catalyst layer due to freezing takes place earlier when GDL with MPL is used. More water in the membrane and catalyst layer captured by MPL causes permanent damage on the catalyst layer faster. More detailed information about the degradation is obtained by electrochemical impedance spectroscopy (EIS). From the point of view that MPL reduces the ohmic resistance, it is effective until 40 freezing cycles, but has no more effect thereafter. On the other hand, from the point of view that MPL enhances mass transport, it delays the increase in the mass transport resistance.  相似文献   

9.
A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect operation conditions (current density, pressure and water content) on the water transport, ohmic resistance and water distribution in the membrane and performance of PEMFC. This model considers the transport of species and water along the porous media: gas diffusion layers (GDL) anode and cathode, and the membrane of PEMFC fuel cell.  相似文献   

10.
A design model is a necessary tool to understand the gas transport phenomena that occurs in a tubular solid oxide fuel cell (SOFC). This paper describes a computational model, which studies the gas flow through an anode-supported tubular SOFC and the subsequent diffusion of gas through its porous anode. The model is a numerical solution for the gas flow through a plug flow reactor with a diffusion layer, which includes the activation, ohmic, and concentration polarizations. Gas diffusion is modeled using the dusty-gas equations which include Knudsen diffusion. Mercury intrusion porosimetry (MIP) is used to experimentally determine micro-structural parameters such as porosity, tortuosity and effective diffusion coefficients, which are used in the diffusion equations for the porous anode layer. It was found that diffusion in the anode plays a key role in the performance of a tubular SOFC. The concentration gradient of hydrogen and water results in a lower concentration of hydrogen and a higher concentration of water at the reactive triple phase boundary (TPB) than in the fuel stream which both lead to a lower cell voltage. The gas diffusion determines the limiting current density of the cell where a higher concentration drop of hydrogen results in a lower limiting current density. The model validates well with experimental data and is used to improve micro-tubular solid oxide fuel cell designs.  相似文献   

11.
A numerical method is developed to study the effect of the compression deformation of the gas diffusion layer (GDL) on the performance of the proton exchange membrane fuel cell (PEMFC). The GDL compression deformation, caused by the clamping force, plays an important role in controlling the performance of PEMFC since the compression deformation affects the contact resistance, the GDL porosity distribution, and the cross-section area of the gas channel. In the present paper, finite element method (FEM) is used to first analyze the ohmic contact resistance between the bipolar plate and the GDL, the GDL deformation, and the GDL porosity distribution. Then, finite volume method is used to analyze the transport of the reactants and products. We investigate the effects of the GDL compression deformation, the ohmic contact resistivity, the air relative humidity, and the thickness of the catalyst layer (CL) on the performance of the PEMFC. The numerical results show that the fuel cell performance decreases with increasing compression deformation if the contact resistance is negligible, but an optimal compression deformation exists if the contact resistance is considerable.  相似文献   

12.
A dynamic one-dimensional isothermal phenomenological model was developed in order to describe the steady-state and transient behavior of high temperature polymer electrolyte membrane fuel cells (PEMFC). The model accounts for transient species mass transport at the bipolar plates and gas diffusion layers and the electric double layers charge/discharge. To record the impedance spectra, a small sinusoidal voltage perturbation was imposed to the simulator over a wide range of frequencies, and the resultant current density amplitude and phase were recorded.The steady-state behavior of the fuel cell, as well as the impedance spectra were obtained and compared to experimental data of two different fuel cells equipped with different MEAs based on phosphoric acid polybenzimidazole membrane. This approach is new and allows a deeper analysis of the controlling phenomena. The model fitted quite well the I-V curves for both systems, but fairly well the Nyquist plots. The differences observed in the Nyquist plots were attributed to proton resistance in the catalyst layer and the gas diffusion limitations to cross the phosphoric acid layer that coats the catalyst, phenomena not included in the proposed phenomenological model.  相似文献   

13.
《Journal of power sources》2002,112(2):367-375
A mathematical model for the anode of a direct methanol fuel cell (DMFC) is presented. This model considers the mass transport in the whole anode compartment and the proton exchange membrane (PEM), together with the kinetic and ohmic resistance effects through the catalyst layer. The influence of key parameters on methanol crossover and anode performance is investigated. Our results indicate that, at low current density and high methanol concentration, the methanol crossover poses a serious problem for a DMFC. The anodic overpotential and reaction-rate distributions throughout the catalyst layer are more sensitive to the protonic conductivity than to the diffusion coefficient of methanol. Increasing the protonic conductivity can effectively enhance the performance of a DMFC.  相似文献   

14.
Phosphoric acid-doped polybenzimidazole is used as a fuel cell membrane and an ionomer in the catalyst layer of a high-temperature polymer electrolyte fuel cell. Single-cell tests are performed to find the optimum ionomer content in the cathode catalyst layer. To determine the effects of the ionomer in the catalyst layer, the potential loss in the cell is separated into activation, ohmic and concentration losses. Each of these losses is examined by means of impedance and morphological analyses. With the weight ratio of ionomer to Pt/C of 1:4 (20 wt.% ionomer in catalyst layer), the fuel cell shows the lowest ohmic resistance. The activation loss in the fuel cell is lowest when the ratio is 1:9 (10 wt.% ionomer in the catalyst layer). The cell performance is dependent on this ratio, and the best cell performance is obtained with a ratio of 1:4.  相似文献   

15.
The effect of ionomer content on the microstructures and multiphase transport properties of cathode catalyst layer (CCL) for polymer electrolyte membrane fuel cells is investigated via combining molecular dynamics simulations and single-cell experiments. The maximum electrochemical surface area (ECSA) is gained when the Pt/C surface is entirely covered by ionomer due to the established proton transport paths network. As the ionomer content increases in the CCL models, the diffusion coefficient of H3O+ increases by 2 times, while the O2 diffusion coefficient shows decrease monotonously. Both charge transfer resistance and ohmic resistance exhibit U-shaped relationship to ionomer content. It is attributed to the coupling effect of increased ECSA, raised proton diffusion coefficient, and thickening CCL. The effect of ionomer on voltage loss in the low-to-high region is explained via a comprehensive understanding of structural interaction, transport dynamics, ECSA and impedance. It can guide the design of efficient three-phase boundary.  相似文献   

16.
Electrochemical impedance spectroscopy is used in this paper to investigate the performance of the fuel cell stack and single cells under long-term vibrating conditions on strengthened roads. During strengthened road vibration test, the electrochemical impedance spectra of fuel cell stack and several cells in the stack are measured nine times at regular intervals. Parameters of a Randles-like equivalent circuit are fitted to the experimental data. The classical Randles cell is extended by changing the standard plane capacitor into a constant phase element so that the quality of fit is improved. The results of the electrochemical impedance analysis indicate that the ohmic resistance of the fuel cell stack is nearly linear with the vibration time and reaches a growth of 0.035695% per hour. While the charge transfer resistance of the fuel cell stack during strengthened vibration test ascends after it falls down firstly, and finally tends to be stable. The influence of cell position on the AC impedance is also studied, and the results of which show that the cell position has a significant impact on the ohmic resistance.  相似文献   

17.
Electrical test methods for on-line fuel cell ohmic resistance measurement   总被引:3,自引:0,他引:3  
The principles and trade-offs of four electrical test methods suitable for on-line measurement of the ohmic resistance (RΩ) of fuel cells is presented: current interrupt, AC resistance, high frequency resistance (HFR), and electrochemical impedance spectroscopy (EIS). The internal resistance of a proton exchange membrane (PEM) fuel cell determined with the current interrupt, HFR and EIS techniques is compared. The influence of the AC amplitude and frequency of the HFR measurement on the observed ohmic resistance is examined, as is the ohmic resistance extracted from the EIS data by modeling the spectra with a transmission line model for porous electrodes. The ohmic resistance of a H2/O2 PEM fuel cell determined via the three methods was within 10–30% of each other. The current interrupt technique consistently produced measured cell resistances that exceeded those of the other two techniques. For the HFR technique, the frequency at which the measurement was conducted influenced the measured resistance (i.e., higher frequency providing smaller RΩ), whereas the AC amplitude did not effect the observed value. The difference in measured ohmic resistance between these techniques exceeds that reasonably accounted for by measurement error. The source of the discrepancy between current interrupt and impedance-based methods is attributed to the difference in the response of a non-uniformly polarized electrode, such as a porous electrode with non-negligible ohmic resistance, to a large perturbation (current interrupt event) as compared to a small perturbation (impedance measurement).  相似文献   

18.
Local compression distribution in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC) and the associated effect on electrical material resistance are examined. For this purpose a macroscopic structural material model is developed based on the assumption of orthotropic mechanical material behaviour for the fibrous paper and non-woven GDLs. The required structural material parameters are measured using depicted measurement methods. The influence of GDL compression on electrical properties and contact effects is also determined using specially developed testing tools. All material properties are used for a coupled 2D finite element simulation approach, capturing structural as well as electrical simulation in combination. The ohmic voltage losses are evaluated assuming constant current density at the catalyst layer and results are compared to cell polarisation measurements for different materials.  相似文献   

19.
以Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池为研究对象,在模拟备用电源工况下对动力电池进行交流阻抗测试。通过建立等效电路来研究欧姆阻抗Rs、电荷传递阻抗Rct和扩散阻抗CPEW随不同搁置时间、荷电状态(state of charge,SOC)的变化规律,研究Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池在备用电源工况下,容量和阻抗的变化趋势。结果表明:随着搁置时间的增加,电池容量衰减1.7%左右。随着搁置时间的增加,不同SOC下的欧姆阻抗Rs具有相同的变化趋势,电荷传递阻抗明显增加。随着SOC的降低,由双电层产生的电荷传递阻抗在逐渐增加。在SOC=0%时,扩散阻抗随搁置时间的增加而增加,在SOC=100%、50%的扩散阻抗有细微的增加。容量衰退和阻抗结果显示出Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池可以很好地在备用电源工况上使用。  相似文献   

20.
Electrochemical impedance spectroscopy is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. This paper presents the diagnostic testing results of a 120 W single cell and a 480 W PEM fuel cell short stack by electrochemical impedance spectroscopy. The effects of clamping torque, non-uniform assembly pressure and operating temperature on the single cell impedance spectrum were studied. Optimal clamping torque of the single cell was determined by inspection of variations of high frequency and mass transport resistances with the clamping torque. The results of the electrochemical impedance analysis show that the non-uniform assembly pressure can deteriorate the fuel cell performance by increasing the ohmic resistance and the mass transport limitation. Break-in procedure of the short stack was monitored and it is indicated that the ohmic resistance as well as the charge transfer resistance decrease to specified values as the break-in process proceeds. The effect of output current on the impedance plots of the short stack was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号