首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jahar Sarkar   《Energy》2009,34(9):1172-1178
In the present study, exergetic analyses and optimization of S-CO2 recompression cycle have been performed to study the effect of operating parameters on the optimum pressure ratio, energetic and exergetic efficiencies and component irreversibilities. Effect of isentropic efficiency, recuperator effectiveness and component pressure drop on the second law efficiency is presented as well. Results show that the effect of minimum operating temperature on the optimum pressure ratio and cycle efficiencies is more predominant than the maximum operating temperature, whereas the effect of maximum cycle pressure is significant only for lower values and the optimum pressure ratio leads to near critical minimum cycle pressure. Result shows that the irreversibilities of heat exchangers are significantly more compared to that of turbo-machineries and the effect of operating parameters on irreversibility is also more significant for recuperators compared to turbo-machines. Effect of isentropic efficiency of turbine is more predominant (about 2.5 times) than that of compressors and effect of high temperature recuperator (HTR) effectiveness is more predominant (about double) than that of low temperature recuperator (LTR) on the second law efficiency. Effect of pressure drop in reactor is more significant compared to others components on the second law efficiency reduction.  相似文献   

2.
The performances of half-effect, single-effect and double-effect H2O/LiBr absorption cooling cycles were analyzed, and it was found that there is an obvious blank for generation temperature between the maximum generation temperature of the single-effect cycle and the minimum generation temperature of the double-effect cycle. It was proposed that the one and a half-effect (1.5-effect) cycle can fill up the blank perfectly. The state of the art in the 1.5-effect cycles was reviewed and analyzed, and two new configurations of 1.5-effect cycles were proposed. Three configurations of 1.5-effect cycles, which are suitable for H2O/LiBr as working fluids, were selected to be analyzed in detail. The 1.5-effect cycle shows the optimum performance at the foregoing blank of generation temperature. For example, under the conditions of evaporation temperature tE is 5 °C, and condensation temperature tC is 42 °C, and absorption temperature tA is 37 °C, the optimum range of generation temperature tG for the 1.5-effect cycle is from 110 °C to 140 °C. The coefficient of performance of the 1.5-effect cycle is about 1.0, which is more than 30% higher than that of the single-effect cycle at the same condition. The effects of the efficiency of solution heat exchanger, the generation temperature, the absorption temperature (or the condensation temperature) and the evaporation temperature on the performances of the three configurations of 1.5-effect cycle were analyzed. It was shown that the configuration II, which is composed with a high-temperature single-effect subcycle and a low-temperature half-effect subcycle, has the highest coefficient of performance and the best operational flexibility. Among the four parameters analyzed, the performances of 1.5-effect cycles are most sensitive to the change of absorption temperature (or condensation temperature), and then to the change of generation temperature.  相似文献   

3.
Mortaza Yari  S.M.S. Mahmoudi 《Energy》2011,36(12):6839-6850
In this paper, two new CO2 cascade refrigeration cycles are proposed and analyzed. In both these cycles the top cycle is an ejector-expansion transcritical cycle and the bottom cycle is a sub-critical CO2 cycle. In one of these proposed cycles the waste heat from the gas cooler is utilized to drive a supercritical CO2 power cycle making the plant a combination of three cycles. Using the first and second laws of thermodynamics, theoretical analyses on the performance characteristics of the cycles are carried out. Also a parametric study is conducted to optimize the performance of each cycle under various operating conditions. The proposed cycles exhibit a reasonable value of COP (coefficient of performance) with a much less value of compressor discharge temperature, compared to the conventional cycles.  相似文献   

4.
Optimization studies along with optimum parameter correlations, using constant area mixing model are presented in this article for ejector-expansion transcritical CO2 heat pump cycle with both conventional and modified layouts. Both the energetic and exergetic comparisons between valve, turbine and ejector-expansions-based transcritical CO2 heat pump cycles are also studied for simultaneous cooling and heating applications. Performances for conventional layouts are presented by maximum COP, optimum discharge pressure and corresponding entrainment ratio and pressure lift ratio of ejector, whereas for modified layout by maximum COP, optimum discharge pressure and corresponding pressure lift ratio. The optimization for modified layout can be realized for certain entrainment ratio, evaporator and gas cooler exit temperature combinations. Considering the trade-off between the system energetic and exergetic performances, and cost associated with expansion devices, the ejector may be the promising alternative expansion device for transcritical CO2 heat pump cycle.  相似文献   

5.
In this paper, a new two-stage configuration of ejector-expansion transcritical CO2 (TRCC) refrigeration cycle is presented, which uses an internal heat exchanger and intercooler to enhance the performance of the new cycle. The theoretical analysis on the performance characteristics was carried out for the new cycle based on the first and second laws of thermodynamics. Based on the simulation results, it is found that, compared with the conventional two-stage transcritical CO2 cycle, the COP and second law efficiency of the new two-stage cycle are about 12.5–21% higher than that of conventional two-stage cycle. It is also concluded that, the performance of the new two-stage transcritical CO2 refrigeration can be significantly improved based on the presented new two-stage cycle. Hence the new two-stage refrigeration cycle is a promising refrigeration cycle from the thermodynamically and technical point of views. A regression analysis in terms of evaporator and gas cooler exit temperatures has been used, in order to develop mathematical expressions for maximum COP, optimum discharge and inter-stage pressures and entrainment ratio.  相似文献   

6.
Solar syngas production from CO2 and H2O is considered in a two-step thermochemical cycle via Zn/ZnO redox reactions, encompassing: 1) the ZnO thermolysis to Zn and O2 using concentrated solar radiation as the source of process heat, and 2) Zn reacting with mixtures of H2O and CO2 yielding high-quality syngas (mainly H2 and CO) and ZnO; the ZnO is recycled to the first, solar step, resulting in net reaction βCO2 + (1 − β)H2O → βCO + (1 − β)H2. Syngas is further processed to liquid hydrocarbon fuels via Fischer-Tropsch or other catalytic processes. Second-law thermodynamic analysis is applied to determine the cycle efficiencies attainable with and without heat recuperation for varying molar fractions of CO2:H2O and solar reactor temperatures in the range 1900-2300 K. Considered is the energy penalty of using Ar dilution in the solar step below 2235 K for shifting the equilibrium to favor Zn production.  相似文献   

7.
Absorption spectra in the wavelength region around 329 nm have been recorded with the cavity ring-down technique in various low pressure (200 hPa) CH4/air flames, two of which with N2O (nitrous oxide) addition. NCN (cyanonitrene) absorption appears to be significant only in N2O-enriched flames, which also reveal spectrally nearby absorption by NH. In a φ = 1.14, N2O oxidizer volume fraction = 57.0% flame, an upper limit for the NCN mole fraction of 4.0 × 10−6 has been found. Absorption spectra have been recorded as a function of height and these clearly show the presence of CH2O (formaldehyde) and OH as well. In CH4/air flames, absorption by CH2O at and near the flame front is strong enough to mask any possible absorption signal due to NCN. OH absorption spectrally coincident with the maximum NCN absorption has been observed as well. CH2O absorption is present throughout the whole 327–331 nm range, which can severely affect the accuracy of NCN concentration measurements if both species are present in the measurement volume. This necessitates the acquisition of continuous spectra instead of absorption measurements at a few specific wavelengths. Absorption signals at wavelengths characteristic for NCN, CH2O, NH and OH are analysed as function of height in the flame. Probabilities that these signals may be assigned unambiguously to a single species are discussed.  相似文献   

8.
In this paper, thermoeconomic optimization and exergy analysis are applied to a CO2/NH3 cascade refrigeration cycle. Cooling capacity, ambient temperature and cold space temperature are constraints of the optimization procedure. Four parameters including condensing temperature of ammonia, evaporating temperature of carbon dioxide, condensing temperature of carbon dioxide and temperature difference in the cascade condenser are chosen as decision variables. The objective function is the total annual cost of the system which includes costs of input exergy to the system and annualized capital cost of the system. Input exergy to the system is the electricity consumption of compressors and fans, and the capital cost includes purchase costs of components. Results show that, optimum values of decision variables may be found by trade-off between the input exergy cost and capital cost. Results of the exergy analysis for each of the system components in the optimum state are also given.  相似文献   

9.
Supercritical CO2 power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO2 power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO2 power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO2 power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions.  相似文献   

10.
Cu2O/TiO2 nanoparticles were prepared by solvothermal method, which formed the heterostructure of Cu2O/TiO2. Due to the heterostructure, the H2 evolution rate under simulated solar irradiation was increasingly promoted. Meanwhile a certain amount of Cu particles which were confirmed by Transmission Electro Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS), formed on the surface of Cu2O/TiO2, and the photoactivity was accordingly further enhanced. The stabilized activity was maintained after many times irradiation. It is interesting that after a few hours irradiation the amount of Cu particles on the surface kept unchanged in the presence of Cu2O and TiO2. The Cu particles that formed during hydrogen generation reaction play a key role in the further enhancement of the hydrogen production activity. In this study, it is the first time to study the details on the formation of the stable ternary structure under simulated solar irradiation and their synergistic effect on the photoactivity of the water splitting.  相似文献   

11.
NO and N2O emissions from circulating fluidized bed (CFB) boilers are determined by their formation and destruction rates in the furnace. The effect of circulating ash from a CFB boiler on NO and N2O emissions were investigated in a laboratory-scale fluidized bed reactor. The results show that the residue char in circulating ash and the CO generated from the char play an important role in NO reduction and N2O formation; however, active components of circulating ash such as CaO, Fe2O3 accelerate the decomposition of N2O. Experiment was also conducted on a 75 t/h CFB boiler fueled with the mixture of anthracite and biomass. The lower residue carbon content of circulating ash in this experiment is lower; therefore, the reacting rate of NO deoxidize is limited. This result verified the conclusion of laboratory research.  相似文献   

12.
A new way of forming HCN in flames via N2O and NNH reacting with CHi radicals is proposed and tested for rich and lean gaseous premixed flames of CH4 and air and also of CH4, N2O and Ar. This new route is thermodynamically more probable than Fenimore’s direct reaction of N2 with CHi radicals. In fact, it is shown that the new mechanism is more important than Fenimore’s reaction in both rich and lean flames. Rate constants of the new reactions forming NO have been suggested on the basis of numerical modeling. It has been shown that the formation of NO through HCN is most effective as the result of reactions initiated by N2O + CH3 → CH2NH + NO, followed by CH2NH + H → H2CN + H2 and CH2NH + O → H2CN + OH. In flames of CH4 and air, a substantial source of N2O comes from the reverse of the reaction N2O + CH3 → CH3O + N2 in the reaction zone. A formula based on the steady state assumption and partial equilibrium limits the number of nitrogen conversion reactions to only 12; this was tested using a premixed flame of CH4 and air.  相似文献   

13.
n-Cu2O photoelectrodes are obtained by immersing a copper plate in a CuSO4(10−3 M) and HCl (10−3 M) solutions. Samples are characterized with XRD and SEM measurements. It is found that Cu2+ ions and the copper substrate are essential to obtain n-type photoresponses from Cu2O. Photocurrent action spectra are investigated with various Cu2O amounts formed on the copper substrate, made from two different methods. Photoluminescence (PL) measurements of the samples prepared by the two methods are examined. Time development of the photocurrent is investigated in KI(10−2 M)+I2 (10−4 M) and trisodium citrate solutions.  相似文献   

14.
Simultaneous photocatalytic reduction of water to H2 and CO2 to CO was observed over Cu2O photocatalyst under both full arc and visible light irradiation (>420 nm). It was found that the photocatalytic reduction preference shifts from H2 (water splitting) to CO (CO2 reduction) by controlling the exposed facets of Cu2O. More interestingly, the low index facets of Cu2O exhibit higher activity for CO2 photoreduction than high index facets, which is different from the widely-reported in which the facets with high Miller indices would show higher photoactivity. Improved CO conversion yield could be further achieved by coupling the Cu2O with RuOx to form a heterojunction which slows down fast charge recombination and relatively stabilises the Cu2O photocatalyst. The RuOx amount was also optimised to maximise the junction's photoactivity.  相似文献   

15.
The emission of both nitrogen oxides and soot from combustion processes is still a matter of concern. When a flue gas recirculation (FGR) technique is applied, the presence of a given nitrogen oxide in the recirculated mixture can affect the emissions of other pollutants, such as soot, and be used for its control in a combustion process. In this context, the present work is focused on the identification of the effect of the main nitrogen oxides (NO, NO2 and N2O) present in combustion systems on soot and main product gases formation from the pyrolysis of ethylene, at atmospheric pressure and in the 975–1475 K temperature range. The experimental results are examined to assess the effectiveness of each nitrogen oxide in suppressing or boosting soot formation, to achieve the possible nitrogen oxides reduction, and to identify the elementary steps involved in the nitrogen oxides and ethylene conversion as function of the different nitrogen oxides. This analysis is supported on model calculations.  相似文献   

16.
A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia–water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition.  相似文献   

17.
The effect of H2O on carbon-coated LiFePO4 particles was investigated by chemical analysis, structural analysis (X-ray diffraction, SEM, TEM), optical spectroscopy (FTIR, Raman) and magnetic measurements. Upon immersion in water, part of the product floats while the main part sinks. Both the floating and the sinking part have been analyzed. We find that the floating and sinking part only differ by the amount of carbon that partly detaches from the particles upon immersion in water. Exposure to H2O results in rapid attack, within minutes, of the surface layer of the particles, because the particles are no longer protected by carbon. The deterioration of the carbon coat is dependent on the synthesis process, either hydrothermal or solid-state reaction. In both cases, however, the carbon coat is permeable to water and fails to protect the surface of the LiFePO4 particles. The consequence is that this immersion results in the chemical attack of LiFePO4, but is restricted to the surface layer of the particles (few nanometers-thick). In case the particles are simply exposed to humid air, the carbon coat protects the particles more efficiently. In this case, the exposure to H2O mainly results in the delithiation of the surface layer, due to the hydrophilic nature of Li, and only the surface layer is affected, at least for a reasonable time of exposure to humid air (weeks). In addition, within this timescale, the surface layer can be chemically lithiated again, and the samples can be dried to remove the moisture, restoring the reversible electrochemical properties.  相似文献   

18.
A comprehensive exergy, exergoeconomic and environmental impact analysis and optimization is reported of several combined cycle power plants (CCPPs). In the first part, thermodynamic analyses based on energy and exergy of the CCPPs are performed, and the effect of supplementary firing on the natural gas-fired CCPP is investigated. The latter step includes the effect of supplementary firing on the performance of bottoming cycle and CO2 emissions, and utilizes the first and second laws of thermodynamics. In the second part, a multi-objective optimization is performed to determine the “best” design parameters, accounting for exergetic, economic and environmental factors. The optimization considers three objective functions: CCPP exergy efficiency, total cost rate of the system products and CO2 emissions of the overall plant. The environmental impact in terms of CO2 emissions is integrated with the exergoeconomic objective function as a new objective function. The results of both exergy and exergoeconomic analyses show that the largest exergy destructions occur in the CCPP combustion chamber, and that increasing the gas turbine inlet temperature decreases the CCPP cost of exergy destruction. The optimization results demonstrates that CO2 emissions are reduced by selecting the best components and using a low fuel injection rate into the combustion chamber.  相似文献   

19.
In this study thermal characteristics of an N2O catalytic igniter with packed bed geometry which is recently introduced as a hybrid ignition system for small satellites are theoretically considered. For the purpose a so-called porous medium approach has been opted for modeling the N2O catalytic igniter with packed bed geometry. Using the Brinkman-extended Darcy equation with Ergun term for fluid flow and the one-equation model for heat transfer, both velocity and temperature distributions are presented. To ensure the validity of the approach, the calculated wall temperature solutions have been compared with previous experimental data. Based on the results, parameters of engineering importance such as the porosity, the pumping power and the ratio of length to diameter of the catalytic igniter are identified. Their effects on thermal performance of the catalytic igniter are systematically presented. Finally an effective volume flow rate has been defined to determine the optimum values of the parameters capable of delivering maximum catalyst performance.  相似文献   

20.
Correlations for the laminar burning velocity of premixed CH4/H2/O2/N2 mixtures were developed using the method of High Dimensional Model Representation (HDMR). Based on experiment data over a wide range of conditions reported in the literature, two types of HDMR correlation (i.e. global and piecewise HDMR correlations) were obtained. The performance of these correlations was assessed through comparison with experimental results and the correlation reported in the literature. The laminar burning velocity predicted by the piecewise HDMR correlations was shown to agree very well with those from experiments. Therefore, the piecewise HDMR correlations can be used as an effective replacement for the full chemical mechanism when the prediction of the laminar burning velocity is needed in certain combustion modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号