首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Velocity dependent friction laws in contact mode atomic force microscopy   总被引:1,自引:0,他引:1  
Stark RW  Schitter G  Stemmer A 《Ultramicroscopy》2004,100(3-4):309-317
Friction forces in the tip–sample contact govern the dynamics of contact mode atomic force microscopy. In ambient conditions typical contact radii between tip and sample are in the order of a few nanometers. In order to account for the large interaction area the dynamics of contact mode atomic force microscope (AFM) is investigated under the assumption of a multi-asperity contact interface between tip and sample. Thus, the kinetic friction force between tip and sample is the product of the real contact area between both solids and the interfacial shear strength. The velocity strengthening of the lateral force is modeled assuming a logarithmic relationship between shear-strength and velocity. Numerical simulations of the system dynamics with this empirical model show the existence of two different regimes in contact mode AFM: steady sliding and stick–slip where the tip undergoes periodically stiction and kinetic friction. The state of the system depends on the scan velocity as well as on the velocity dependence of the interfacial friction force between tip and sample. Already small viscous damping contributions in the tip–sample contact are sufficient to suppress stick–slip oscillations.  相似文献   

2.
R. Buzio  C. BoragnoU. Valbusa 《Wear》2003,254(9):917-923
We investigated the contact mechanics and friction forces between atomic force microscope (AFM) probes and self-affine fractal carbon films. We studied single-asperity contacts by means of conventional nanometric conical tips whilst custom-designed micrometric flat tips were adopted to form multiple junctions between the probe and the sample. By varying the externally applied load we found that the average frictional force follows a power-law behavior in the single-asperity regime and a linear behavior in the multi-asperity regime. The friction coefficient was the same for carbon specimens having different fractality. We also acquired quasi-static load-displacement curves on micrometric scale, revealing a strong dependence of the average indentation depth on the values of fractal parameters. A comparison of experimental data with contact theories for randomly rough surfaces is provided.  相似文献   

3.
We present a remotely-controlled device for sample stretching, designed for use with atomic force microscopy (AFM) and providing electrical connection to the sample. Such a device enables nanoscale investigation of electrical properties of thin gold films deposited on polydimethylsiloxane (PDMS) substrate as a function of the elongation of the structure. Stretching and releasing is remotely controlled with use of a dc actuator. Moreover, the sample is stretched symmetrically, which gives an opportunity to perform AFM scans in the same site without a time-consuming finding procedure. Electrical connections to the sample are also provided, enabling Kelvin probe force microscopy (KPFM) investigations. Additionally, we present results of AFM imaging using the stretching stage.  相似文献   

4.
原子力显微镜原理与应用技术   总被引:3,自引:0,他引:3  
本文简述原子力显微镜的工作原理,对比说明敲击模式的优越性,指出针尖-样品卷积效应和假象产生的原因,并例证其应用领域及其测试效果。  相似文献   

5.
Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.  相似文献   

6.
A novel calibration method is proposed for determining lateral forces in atomic force microscopy (AFM), by introducing an angle conversion factor, which is defined as the ratio of the twist angle of a cantilever to the corresponding lateral signal. This factor greatly simplifies the calibration procedures. Once the angle conversion factor is determined in AFM, the lateral force calibration factors of any rectangular cantilever can be obtained by simple computation without further experiments. To determine the angle conversion factor, this study focuses on the determination of the twist angle of a cantilever during lateral force calibration in AFM. Since the twist angle of a cantilever cannot be directly measured in AFM, the angles are obtained by means of the moment balance equations between a rectangular AFM cantilever and a simple commercially available step grating. To eliminate the effect of the adhesive force, the gradients of the lateral signals and the twist angles as a function of normal force are used in calculating the angle conversion factor. To verify reliability and reproducibility of the method, two step gratings with different heights and two different rectangular cantilevers were used in lateral force calibration in AFM. The results showed good agreement, to within 10%. This method was validated by comparing the coefficient of friction of mica so determined with values in the literature.  相似文献   

7.
Sample preparation procedures for biological atomic force microscopy   总被引:4,自引:0,他引:4  
Since the late 1980s, atomic force microscopy (AFM) has been increasingly used in biological sciences and it is now established as a versatile tool to address the structure, properties and functions of biological specimens. AFM is unique in that it provides three-dimensional images of biological structures, including biomolecules, lipid films, 2D protein crystals and cells, under physiological conditions and with unprecedented resolution. A crucial prerequisite for successful, reliable biological AFM is that the samples need to be well attached to a solid substrate using appropriate, nondestructive methods. In this review, we discuss common techniques for immobilizing biological specimens for AFM studies.  相似文献   

8.
We have developed a new technique, called multifrequency high-speed phase-modulation atomic force microscopy (PM-AFM) in constant-amplitude (CA) mode based on the simultaneous excitation of the first two flexural modes of a cantilever. By performing a theoretical investigation, we have found that this technique enables the simultaneous imaging of the surface topography, energy dissipation and elasticity (nonlinear mapping) of materials. We experimentally demonstrated high-speed imaging at a scan speed of 5 frames/s for a polystyrene (PS) and polyisobutylene (PIB) polymer-blend thin-film surface in water.  相似文献   

9.
The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells [1] (Kasas and Ikai, 1995), [2] (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells.  相似文献   

10.
Fluorescent quantum dots (QDs) are a new class of fluorescent label and have been extensively used in cell imaging. Streptavidin-conjugated QDs have a diameter of ca. 10–15 nm; therefore when used as probes to label cell-surface biomolecules, they can provide contrast enhancement under atomic force microscopy (AFM) and allow specific proteins to be distinguished from the background. In addition, the size and fluorescent properties potentially make them as probes in correlative fluorescence microscopy (FM) and AFM. In this study, we tested the feasibility of using QD-streptavidin conjugates as probes to label wheat germ agglutinin (WGA) receptors on the membrane of human red blood cells (RBCs) and simultaneously obtain fluorescence and AFM images. The results show that the distribution of QDs labeled on human RBCs was non-uniform and that the number of labeled QDs on different erythrocytes varied significantly, which perhaps indicates different ages of the erythrocytes. Thus, QDs may be employed as bifunctional cell-surface markers for both FM and AFM to quantitatively investigate the distribution and expression of membrane proteins or receptors on cell surface.  相似文献   

11.
From a mathematical point of view, the atomic force microscope (AFM) belongs to a special class of continuous time dynamical systems with intermittent impact collisions. Discontinuities of the velocity result from the collisions of the tip with the surface. Transition to chaos in non-linear systems can occur via the following four routes: bifurcation cascade, crisis, quasi-periodicity, and intermittency. For the AFM period doubling and period-adding cascades are well established. Other routes into chaos, however, also may play an important role. Time series data of a dynamic AFM experiment indicates a chaotic mode that is related to the intermittency route into chaos. The observed intermittency is characterized as a type III intermittency. Understanding the dynamics of the system will help improve the overall system performance by keeping the operation parameters of dynamic AFM in a range, where chaos can be avoided or at least controlled.  相似文献   

12.
Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.  相似文献   

13.
This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 μm/s—a threefold improvement in bandwidth versus conventional piezotube actuators.  相似文献   

14.
Atomic force microscopy and friction force microscopy have been used to conduct microfriction studies on short carbon fiber reinforced PEEK/PTFE composite blends. The relative micro-scale coefficients of friction of different filler particles (PTFE, CF in normal and anti-plane orientation, and graphite) have been compared with the matrix PEEK. The order of the nanoscopic coefficients of friction was: carbon fiber in normal orientation>carbon fiber in plane orientation>PEEK matrix>graphite flake>carbon fiber in parallel orientation>PTFE particle. Additional microhardness studies resulted in qualitative hardness comparisons of the various phases. Their order of the form: carbon fibers PEEK and graphite>PTFE also reflects the contribution of the various phases to the wear resistance of the composite blend. The latter can be estimated from the AFM-topography traces of the polished composite surfaces.  相似文献   

15.
The ultrasonic friction mode of an atomic force microscope is a scanning probe technique allowing one to analyze the load and velocity dependence of friction. The technique is based on evaluation of the resonance behavior of an AFM cantilever when in contact with a vibrating sample surface. The effect of load and lateral displacement of the sample surface on the shape of the torsional resonance spectra of the AFM cantilever is evaluated under dry and lubricated sliding conditions. A characteristic flattening of the torsional resonance curve has been observed at large surface displacements, resulting from the onset of sliding friction in the AFM cantilever–sample surface contact. An analytical model describing torsional cantilever vibrations in Hertzian contact with a sample surface is presented, and numerical simulations have been carried out in order to confirm that the flattening of the resonance curve occurs with the onset of the sliding friction in the contact.  相似文献   

16.
Yeh MK  Tai NH  Chen BY 《Ultramicroscopy》2008,108(10):1025-1029
Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 degrees and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1muN landing force and decrease 18.60% for the V-shaped cantilever with 50nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy.  相似文献   

17.
Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within ∼50 nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein–DNA interaction in sub-seconds time scale.  相似文献   

18.
日本精工公司(SEIKO)生产的原子力显微镜的功能多、性能好,国内已经有近百台的拥有量。它的信号放大、处理主要由锁相放大器完成。但其内部的锁相放大器灵敏度不够高,外加一台高性能、高灵敏度的锁相放大器,可大大提高其性能。用美国斯坦福公司产的SR830锁相放大器对本实验室的日本SEIKO公司SPA400原子力显微镜进行性能改进,可使其性能有很大提高。  相似文献   

19.
In recent years, the application of atomic force microscopy (AFM) to biological systems has highlighted the potential of this technology. AFM provides insights into studies of biological structures and interactions and can also identify and characterize a large panel of pathogens, including viruses. The Flaviviridae family contains a number of viruses that are important human and animal pathogens. Among them, Dengue virus causes epidemics with fatal outcomes mainly in the tropics. In this study, Dengue virus is visualized for the first time using the in air AFM technique. Images were obtained from a potassium-tartrate gradient-purified virus. This study enhances the application of AFM as a novel tool for the visualization and characterization of virus particles. Because flavivirus members are closely related, studies of the morphologic structure of the Dengue virus can reveal strategies that may be useful to identify and study other important viruses in the family, including the West Nile virus.  相似文献   

20.
We have studied frictional force and wear problem in real-time atomic force microscopy in contact-mode using a resonator type mechanical scanner allegedly reported. The fast scanning may cause wear in the sample surface or the tip, and may deteriorate the image quality. Mineral oil was used to make a lubricious surface on a polycarbonate sample, and it was found that the interfacial frictional force was decreased. A Si tip which was coated with a hydrophobic film by means of chemical modification was confirmed to diminish the frictional force in the fast scanning process. The resultant image quality was improved due to reduced friction and wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号