首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Focused Ion beam (FIB) prepared GaAs p-n junctions have been examined using off-axis electron holography. Initial analysis of the holograms reveals an experimentally determined built-in potential in the junctions that is significantly smaller than predicted from theory. In this paper we show that through combinations of in situ annealing and in situ biasing of the specimens, by varying the intensity of the incident electron beam, and by modifying the FIB operating parameters, we can develop an improved understanding of phenomena such as the electrically 'inactive' thickness and subsequently recover the predicted value of the built-in potential of the junctions.
PACS numbers: 85.30.De  相似文献   

2.
Off‐axis electron holography in the transmission electron microscope (TEM) is used to measure two‐dimensional electrostatic potentials in both unbiased and reverse biased silicon specimens that each contain a single p–n junction. All the specimens are prepared for examination in the TEM using focused ion beam (FIB) milling. The in situ electrical biasing experiments make use of a novel specimen geometry, which is based on a combination of cleaving and FIB milling. The design and construction of an electrical biasing holder are described, and the effects of TEM specimen preparation on the electrostatic potential in the specimen, as well as on fringing fields beyond the specimen surface, are assessed.  相似文献   

3.
Off-axis electron holography in the transmission electron microscope is a powerful interferometric technique that enables electrostatic and magnetic fields to be imaged and quantified with spatial resolution often approaching the nanometer scale. Here, we demonstrate the capabilities of the technique for phase quantification at the nanoscale by briefly reviewing some of our recent studies of nanostructured materials. Examples that are described include determination of the electrostatic potential profiles associated with doped Si- and GaAs-based semiconductor devices, measurement of hole accumulation in Ge quantum dots, mapping of polarization fields in III-nitride heterostructures, and observation of the remanent states and reversal mechanisms of lithographically patterned magnetic nanorings. Some issues associated with sample preparation for doped semiconductor heterostructures are also briefly discussed.  相似文献   

4.
A focused ion beam (FIB) microscope has been used to simultaneously depth profile and image the γγ microstructure of a nickel base superalloy using normal incidence milling in order to characterize the precipitate microstructure in three dimensions (3D). The normal incidence milling rates of the γ and γ phases in this alloy are closely matched when the orientation of the depth-profiled surface is near , which allows for uniform material removal to depths up to a couple of microns. Depth-profiling experiments consisted of automated ion milling and collection of ion-generated secondary-electron images at specified intervals, and was demonstrated for a voxel resolution of roughly . Image-processing software was used for automated processing of the 2D image sequence to render the γ precipitate structure in 3D.  相似文献   

5.
We investigate Ar ion‐milling rates and Ga‐ion induced damage on sample surfaces of Si and GaAs single crystals prepared by focused ion beam (FIB) method for transmission electron microscopy observation. The convergent beam electron diffraction technique with Bloch simulation is used to measure the thickness of the Ar‐ion milled samples to calculate the milling rates of Si and GaAs single crystals. The measurement shows that an amorphous layer is formed on the sample surface and can be removed by further Ar‐ion milling. In addition, the local symmetry breaking induced by FIB is investigated using quantitative symmetry measurement. The FIBed‐GaAs sample shows local symmetry breaking after FIB milling, although the FIBed‐Si sample has no considerable symmetry breaking.  相似文献   

6.
In this paper, synthetic fluorapatite–gelatine composite particles are prepared for transmission electron microscopy (TEM) studies using two methods based on focused ion beam (FIB) milling. TEM studies on the FIB‐prepared specimens are compared with TEM observations on samples prepared using an ultramicrotome. The results show that ultramicrotome slicing causes significant cracking of the apatite, whereas the ion beam can be used to make high‐quality, crack‐free specimens with no apparent ion beam‐induced damage. The TEM observations on the FIB‐prepared samples confirm that the fluorapatite composite particles are composed of elongated, preferentially orientated grains and reveal that the grain boundaries contain many small interstices filled with an amorphous phase.  相似文献   

7.
The preparation of transmission electron microscope (TEM) thin foil specimens from metal alloys containing cracks is usually thwarted by the difficulty in preventing preferential erosion of material along the flanks and at the tips of cracks. Recent developments in focused ion beam (FIB) micromachining methods have the potential to overcome this inherent problem. In this article we describe the development of new procedures, one using FIB alone and the other using a combination of FIB with more conventional ion milling to generate TEM specimens that largely retain the microstructural information at stress corrosion cracks in austentic alloys. Examples of corrosion product phase identification and interfacial segregation are included to verify that detailed information is not destroyed by ion bombardment during specimen preparation.  相似文献   

8.
Molar dentine was sliced into 100 nm ultrathin sections, by means of a focused ion beam, for observation by energy-filtering transmission electron microscopy (EFTEM). Within the matrix, crystals approximately 10 nm wide and 50–100 nm long were clearly observed. When carbon and calcium were mapped in electron spectroscopic images by EFTEM, carbon failed to localize in crystals. However, it was found in other regions, especially those adjacent to crystals. Because carbon localizations were thought to reflect the presence of organic components, carbon concentration in regions near crystals suggested the interaction of crystals and organics, leading to organic control of apatite formation and growth. Ca was present in almost all regions. The majority of Ca localizing in regions other than crystals may be bound to organic substances present in dentine matrix. These substances are thought to both accumulate Ca and act as reservoirs for crystallization of apatite in dentine.  相似文献   

9.
Ditto J  Krinsley D  Langworthy K 《Scanning》2012,34(5):279-283
While investigating rock varnish, we explored novel uses for an in‐situ micromanipulator, including charge collection, sample manipulation, as well as digging and dissection at the micron level. Dual‐beam focused ion beam microscopes (DB‐FIB or FIBSEM) equipped with micromanipulators have proven to be valuable tools for material science, semiconductor research, and product failure analysis. Researchers in many other disciplines utilize the DB‐FIB and micromanipulator for site‐specific transmission electron microscope (TEM) foil preparation. We have demonstrated additional applications for in‐situ micromanipulators. SCANNING 34: 279–283, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Energetic beams of electrons and ions are widely used to probe the microscopic properties of materials. Irradiation with charged beams in scanning electron microscopes (SEM) and focused ion beam (FIB) systems may result in the trapping of charge at irradiation induced or pre-existing defects within the implanted microvolume of the dielectric material. The significant perturbing influence on dielectric materials of both electron and (Ga(+)) ion beam irradiation is assessed using scanning probe microscopy (SPM) techniques. Kelvin Probe Microscopy (KPM) is an advanced SPM technique in which long-range Coulomb forces between a conductive atomic force probe and the silicon dioxide specimen enable the potential at the specimen surface to be characterized with high spatial resolution. KPM reveals characteristic significant localized potentials in both electron and ion implanted dielectrics. The potentials are observed despite charge mitigation strategies including prior coating of the dielectric specimen with a layer of thin grounded conductive material. Both electron- and ion-induced charging effects are influenced by a delicate balance of a number of different dynamic processes including charge-trapping and secondary electron emission. In the case of ion beam induced charging, the additional influence of ion implantation and nonstoichiometric sputtering from compounds is also important. The presence of a localized potential will result in the electromigration of mobile charged defect species within the irradiated volume of the dielectric specimen. This electromigration may result in local modification of the chemical composition of the irradiated dielectric. The implications of charging induced effects must be considered during the microanalysis and processing of dielectric materials using electron and ion beam techniques.  相似文献   

11.
Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin‐shaped ZSM‐5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid‐like components aside from a central component. Both pyramid‐like components are rotated by 90° along the common c‐axis and with respect to the central component while the interfaces between the components show local zig‐zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid‐like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90° intergrowth components is proposed.  相似文献   

12.
We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way.  相似文献   

13.
Tomography in a focused ion beam (FIB) scanning electron microscope (SEM) is a powerful method for the characterization of three-dimensional micro- and nanostructures. Although this technique can be routinely applied to conducting materials, FIB–SEM tomography of many insulators, including biological, geological and ceramic samples, is often more difficult because of charging effects that disturb the serial sectioning using the ion beam or the imaging using the electron beam. Here, we show that automatic tomography of biological and geological samples can be achieved by serial sectioning with a focused ion beam and block-face imaging using low-kV backscattered electrons. In addition, a new ion milling geometry is used that reduces the effects of intensity gradients that are inherent in conventional geometry used for FIB–SEM tomography.  相似文献   

14.
Nanometre‐scale electron spectroscopic imaging has been applied to characterize the operation of a copper filtration plant in environmental science. Copper washed off from roofs and roads is considered to be a major contributor to diffuse copper pollution of urban environments. A special adsorber system has been suggested to control the diffusion of copper fluxes by retaining Cu with a granulated iron hydroxide. The adsorber was tested over an 18‐month period on facade runoff. The concentrations range of Cu in the runoff water was measured between 10 and 1000 p.p.m. and could be reduced by between 96% and 99% in the adsorption ditch. Before the analysis of the adsorber, the suspended material from the inflow was ultracentrifuged onto TEM grids and analysed by energy‐filtered transmission electron microscopy (EFTEM). Copper was found either as small precipitates 5–20 nm in size or adsorbed onto organic and inorganic particles. This Cu represents approximately 30% of the total dissolved Cu, measured by atomic emission spectrometry. To locate where the copper sorption takes place within the adsorber, the granulated iron oxide was analysed by analytical electron microscopy after exposure to the roof run‐off water. A section of the granulated iron hydroxide was prepared by focused ion beam milling. The thickness of the lamina was reduced to 100 nm and analysed by EFTEM. The combination of these two techniques allowed us to observe the diffusion of Cu into the aggregate of Fe. Elemental maps of Fe and Cu revealed that copper was not only present at the surface of the granules but was also sorbed onto the fine particles inside the adsorber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号